首页 > 其他 > 详细

多校3 1002 RGCDQ

时间:2015-07-28 20:59:29      阅读:166      评论:0      收藏:0      [点我收藏+]

RGCDQ

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 323    Accepted Submission(s): 162


Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)
 

 

Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
In the next T lines, each line contains L, R which is mentioned above.

All input items are integers.
1<= T <= 1000000
2<=L < R<=1000000
 

 

Output
For each query,output the answer in a single line. 
See the sample for more details.
 

 

Sample Input
2 2 3 3 5
 

 

Sample Output
1 1
 

 

Source
 

 

Recommend
wange2014   |   We have carefully selected several similar problems for you:  5326 5325 5324 5323 5322 
技术分享
  1 #include<stdio.h>
  2 #include<string.h>
  3 #include<math.h>
  4 
  5 int a[1000050],b[1000000],k,f[1000050],s[1000050][10];
  6 
  7 int Sieve(int n)
  8 {
  9   a[1]=0;k=0;a[0]=0;
 10            for (int i = 2; i <= n; i++)
 11                 a[i] =1;
 12            for (int i = 2; i <= sqrt(n); i++)
 13            {
 14                if (a[i])
 15                    for (int j = i; j*i <=n; j++)
 16                         a[j * i] = 0;
 17            }
 18            for (int i = 0; i <= n; i++)
 19            {
 20                if (a[i]==1)
 21                {
 22                     k++;
 23                     b[k]=i;
 24                }
 25            }
 26 }
 27 
 28 int gcd(int a,int b) 
 29 { 
 30     if(a<b) 
 31         return gcd(b,a); 
 32     else if(b==0) 
 33         return a; 
 34     else
 35         return gcd(b,a%b); 
 36 } 
 37 
 38 int main()
 39 {
 40     int T;
 41     int i,j,k;
 42     Sieve(1000000);
 43     memset(f,0,sizeof(f));
 44     for(i=2;i<=1000000;i++)
 45     {
 46         int x=i;
 47         k=1;
 48         while(1)
 49         {
 50           if(x==1)
 51           {
 52             break;
 53           }
 54           if(a[x]==1)
 55           {
 56             f[i]++;
 57             break;
 58           }
 59 
 60           if(x%b[k]==0)
 61           {
 62             f[i]++;
 63             while(x%b[k]==0)
 64             {
 65               x=x/b[k];
 66             }
 67           }
 68           k++;
 69         }
 70         //printf("%d ",f[i]);
 71     }
 72     memset(s,0,sizeof(s));
 73     for(i=1;i<=1000000;i++)
 74     {
 75       for(j=1;j<=7;j++)
 76         s[i][j]=s[i-1][j];
 77       s[i][f[i]]++;
 78     }
 79     scanf("%d",&T);
 80     int l,r;
 81     int num[15];
 82     while(T--)
 83     {
 84         memset(num,0,sizeof(num));
 85         scanf("%d %d",&l,&r);
 86         for(i=1;i<=8;i++)
 87           num[i]=s[r][i]-s[l-1][i];
 88         int ma=0;
 89         for(i=10;i>=1;i--)
 90         {
 91           if(num[i]>0)
 92           {
 93             if(num[i]>=2)
 94             {
 95               if(i>ma)
 96                 ma=i;
 97             }
 98             else
 99             {
100               for(j=i-1;j>=1;j--)
101               {
102                 if(num[j]>0)
103                   if(gcd(i,j)>ma)
104                     ma=gcd(i,j);
105               }
106             }
107 
108           }
109         }
110         printf("%d\n",ma);
111     }
112     return 0;
113 }
View Code

 

多校3 1002 RGCDQ

原文:http://www.cnblogs.com/cyd308/p/4684204.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!