页的尺寸是4KB,虚拟地址的前20位用于指定一个物理页,后12位用于访问页内偏移。
页表项的结构:
层次化的设计想法:
因为4GB的虚拟内存共有1M=220=1048576个4K大小的页面。
我们将这些页面分成210=1024份,即从页表1到页表1024,由页目录表管理;
每一份(每一页表)有210=1024个页,由每一个页表管理,页在页表中是随机的,哪个页位于哪个页表中是没有规律的;
处理器的页部件专门负责线性地址到物理地址的转换工作. 它首先将段部件送来的32位线性地址分为3段, 分别是高10位, 中间10位, 低12位. 高10位是页目录的索引, 中间10位是页表的索引, 低12位则作为页内偏移量来用.
当前任务页目录的物理地址在处理器的CR3寄存器中, 假设它的内容为0x00005000. 段管理部件输出的线性地址是0x00801050, 其二进制的形式如图中给出. 高10位是十六进制的0x002, 它是页目录表内的索引,处理器将它乘以4(因为每个目录项4字节), 作为偏移量访问页目录. 最终处理器从物理地址00005008处取得页表的物理地址0x08001000.
线性地址的中间10位为0x001, 处理器用它作为页表索引取得页的物理地址. 将该值乘以4, 作为偏移量访问页表. 最终, 处理器又从物理地址08001004处取得页的物理地址, 这就是我们一直努力寻找的那个页.
页的物理地址是0x0000c000, 而线性地址的低12位是数据所在的页内偏移量. 故处理器将它们相加, 得到物理地址0x0000C050, 这就是线性地址0x00801050所对应的物理地址, 要访问的数据就在这里.
注意, 这种变换不是无缘无故的, 而是事先安排好的. 当任务加载时, 操作系统先创建虚拟的段, 并根据段地址的高20位决定它要用到哪些页目录项和页表项. 然后, 寻找空闲的页, 将原本应该写入段中的数据写到一个或者多个页中, 并将页的物理地址填写到相对应的页表项中. 只有这样做了, 当程序运行的时候, 才能以相反的顺序进行地址变换, 并找到正确的数据.
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/xy010902100449/article/details/47111731