题意:给出n个点,m条边,现在要给边定向使得点的出度和入度的差不超过1
思路:
对每个点进行出度和入度的判断,如果出度大,就先进行反向的搜索(每搜索一条边u,v就认为这是一条v到u的有向边),反之,进行正向搜索(每搜到一条边u,v认为这是一条u到v的有向边),一直搜索到找不到边能继续为止,每条边只遍历一次
代码:
#pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #include <cstring> const int MAX_N = 100007; const int MAX_M = 300007; struct Node { int v, id, nxt; Node () { } Node (int _v, int _i, int _n) { v = _v; id = _i; nxt = _n; } }; int head[MAX_N], cnt, vis[MAX_M << 1]; Node G[MAX_M << 1]; int in[MAX_N], out[MAX_N], du[MAX_N] ; int ans[MAX_M << 1], n; void Clear() { cnt = 0; memset(head, -1, sizeof head); memset(in, 0, sizeof in); memset(out, 0, sizeof out); memset(du, 0, sizeof du); memset(vis, false, sizeof vis); } void add(int u, int v, int id) { G[cnt] = Node(v, id, head[u]); head[u] = cnt++; } void dfs1(int u) { for(int i = head[u]; ~i; i = G[i].nxt) { if(vis[i]) { head[u] = G[i].nxt; continue; } int v = G[i].v; if(u != v && in[v] > out[v]) continue; vis[i] = vis[i ^ 1] = 1 ; if(i % 2) ans[i / 2] = 0 ; else ans[i / 2] = 1 ; out[u]++, in[v]++; head[u] = G[i].nxt; dfs1(v); break; } } void dfs2(int u) { for(int i = head[u]; ~i; i = G[i].nxt) { if(vis[i]) { head[u] = G[i].nxt; continue ; } int v = G[i].v; if(u != v && out[v] > in[v]) continue; vis[i] = vis[i ^ 1] = 1; if(i % 2) ans[i / 2] = 1; else ans[i / 2] = 0; out[v]++, in[u]++; head[u] = G[i].nxt; dfs2(v); break; } } template <class T> inline bool rd(T &ret) { char c; int sgn; if(c = getchar() , c == EOF) return false; while(c != ‘-‘ && (c < ‘0‘ || c > ‘9‘)) c = getchar(); sgn = (c == ‘-‘) ? -1 : 1; ret = (c == ‘-‘) ? 0 : (c - ‘0‘); while(c = getchar(), c >= ‘0‘ && c <= ‘9‘) ret = ret * 10 + (c - ‘0‘); ret *= sgn; return true; } int main() { int T; scanf("%d", &T) ; while(T-- > 0) { int n, m; rd(n), rd(m); Clear(); for(int i = 0; i < m; ++i) { int u, v; rd(u), rd(v); add(u, v, i), add(v, u, i); du[u]++, du[v]++; } for(int i = 1; i <= n; ++i) { while(in[i] + out[i] != du[i]) if(in[i] >= out[i]) dfs1(i); else dfs2(i); } for(int i = 0; i < m; ++i) { printf("%d\n", ans[i]) ; } } return 0 ; }
【搜索】HDU 5348 MZL's endless loop
原文:http://www.cnblogs.com/Rojo/p/4703172.html