| Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 23914 | Accepted: 6355 |
Description
Input
Output
Sample Input
1 3 3 1 2 3 1 3 4 2 3 5
Sample Output
Scenario #1: 4
题意&分析:水题一枚,给定N个点,M条路,求从1到N的最大的最小边权,如果数据在300以内,Floyd水过,但是这个题不行,N<1000,那么,我们就可以用Dijstra来做,这里需要注意的应该就是 初始化以及顶点的松弛操作:
d[y] = max(d[y], min(d[x], Map[x][y]));
网上有给最大生成树来做,也很简单,最小生成树会的话,这个也就不再话下。
下面给出两种风格的Dij代码:
/****************************>>>>HEADFILES<<<<****************************/
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
/****************************>>>>>DEFINE<<<<<*****************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define FIN freopen("input.txt","r",stdin)
#define rep(i,a,b) for(int i = a;i <= b;i++)
#define MP(a,b) make_pair(a,b)
#define PB(a) push_back(a)
#define fst first
#define snd second
/****************************>>>>>>DEBUG<<<<<<****************************/
#define out(x) cout<<x<<" ";
/****************************>>>>SEPARATOR<<<<****************************/
const int maxn = 1000 + 5;
const int INF = 0x3f3f3f3f;
int N, M, Map[maxn][maxn], d[maxn];
bool vis[maxn];
void init()
{
memset(Map, 0, sizeof(Map));
}
void Dijkstra()
{
memset(vis, false, sizeof(vis));
d[1] = 0;
rep(i,2,N) d[i] = Map[1][i];
rep(i, 1, N-1)
{
int x = 0, m = 0;
rep(y, 1, N) if(!vis[y] && d[y] > m) m = d[x = y];
vis[x] = true;
rep(y, 1, N)
{
if(!Map[x][y]) continue;
d[y] = max(d[y], min(d[x], Map[x][y]));
}
}
}
int main()
{
// FIN;
int T, cas = 0, x, y, t;
for(scanf("%d", &T); T--;)
{
scanf("%d %d", &N, &M);
init();
rep(i, 1, M)
{
scanf("%d %d %d", &x, &y, &t);
Map[x][y] = Map[y][x] = t;
}
Dijkstra();
if(cas) puts("");
printf("Scenario #%d:\n", ++cas);
printf("%d\n", d[N]);
}
return 0;
}
/****************************>>>>HEADFILES<<<<****************************/
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
/****************************>>>>>DEFINE<<<<<*****************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define FIN freopen("input.txt","r",stdin)
#define rep(i,a,b) for(int i = a;i <= b;i++)
#define rep0(i,b) for(int i = 0;i < b;i++)
#define rep1(i,b) for(int i = 1;i <= b;i++)
#define MP(a,b) make_pair(a,b)
#define PB(a) push_back(a)
#define fst first
#define snd second
/****************************>>>>>>DEBUG<<<<<<****************************/
#define out(x) cout<<x<<" ";
/****************************>>>>SEPARATOR<<<<****************************/
const int maxn = 1000 + 5;
const int INF = 0x3f3f3f3f;
int N,M;
struct Edge
{
int from, to, dist;
Edge() {}
Edge(int _from, int _to, int _dist) : from(_from), to(_to), dist(_dist) {}
};
struct HeapNode
{
int pos, d;
HeapNode() {}
HeapNode(int _pos, int _d) : pos(_pos), d(_d) {}
bool operator < (const HeapNode & p) const
{
return d < p.d;
}
};
struct Dijkstra
{
int n, s, d[maxn];
bool vis[maxn];
vector<Edge> edges;
vector<int> G[maxn];
Dijkstra() {}
Dijkstra(int _n, int _s) : n(_n), s(_s) {}
void init(int _n, int _s)
{
this->n = _n, this->s = _s;
edges.clear();
rep1(i, n)
{
G[i].clear();
}
}
void AddEdge(int u, int v, int t)
{
edges.PB(Edge(u, v, t));
int m = edges.size();
G[u].PB(m - 1);
}
void dijkstra()
{
memset(vis, false, sizeof(vis));
memset(d,0,sizeof(d));
d[s] = INF;
priority_queue<HeapNode> Que;
Que.push(HeapNode(s, 0));
while(!Que.empty())
{
HeapNode now = Que.top();
Que.pop();
int u = now.pos;
if(vis[u]) continue;
vis[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if(d[e.to] < min(d[u], e.dist))
{
d[e.to] = min(d[u], e.dist);
Que.push(HeapNode(e.to,d[e.to]));
}
}
}
}
}dij;
int main()
{
// FIN;
int T,cas = 0,x,y,t;
for(scanf("%d",&T);T--;)
{
scanf("%d %d",&N,&M);
dij.init(N,1);
rep(i,1,M)
{
scanf("%d %d %d",&x,&y,&t);
dij.AddEdge(x,y,t);
dij.AddEdge(y,x,t);
}
dij.dijkstra();
if(cas) puts("");
printf("Scenario #%d:\n",++cas);
printf("%d\n",dij.d[N]);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
poj 1797 Heavy Transportation 【最短路Dijkstra 变式】
原文:http://blog.csdn.net/acmore_xiong/article/details/47291061