首页 > 其他 > 详细

scikit-learn(工程中用的相对较多的模型介绍):1.14. Semi-Supervised

时间:2015-08-07 09:36:48      阅读:357      评论:0      收藏:0      [点我收藏+]

参考:http://scikit-learn.org/stable/modules/label_propagation.html



The semi-supervised estimators insklearn.semi_supervised are able to make use of this additional unlabeled data to better capture the shape of the underlying data distribution and generalize better to new samples. These algorithms can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.


Unlabeled entries in yIt is important to assign an identifier to unlabeled points along with the labeled data when training the model with the fit method. The identifier that this implementation uses is the integer value 技术分享.


有时间翻译:

版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn(工程中用的相对较多的模型介绍):1.14. Semi-Supervised

原文:http://blog.csdn.net/mmc2015/article/details/47333839

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!