当图中所有边的权重为非负值时,我们可以选用巧妙Dijkstra算法。
本文使用C++实现了这一基本算法。参考《算法导论》第24.3节。
不过在算法的实现中,取当前与原点s最近的节点操作时,采用了线性扫描的策略。如果换用堆或者优先级队列会好很多。
/**
* Dijkstra‘s Single Source Shortest Path Algorithm in C++
* Time Cost : O(N^2)
* Thanks to Introduction to Algorithms (CLRS) Chapter 24.3
* Author: Zheng Chen / Arclabs001
* Copyright 2015 Xi‘an University of Posts & Telecommunications
*/
#include <iostream>
#include <vector>
#include <stack>
#include <fstream>
#define INF 0xfffffff
using namespace std;
const int N = 5;
const int M = 10;
ifstream in;
enum status {UNSELECTED,SELECTED};
struct edge
{
int dest;
int weight;
};
struct vertex
{
int num;
int dist;
int inDegree,outDegree;
status _stat;
vertex * parent;
}V[N];
vector<edge> AdjList[N];
vector<int> SELECTED_vertex;
void initialize(int s)
{
for(int i=0; i<N; i++)
{
V[i].num = i;
V[i].dist = INF;
V[i].parent = nullptr;
V[i].inDegree = 0;
V[i].outDegree = 0;
V[i]._stat = UNSELECTED;
AdjList[i].clear();
}
for(int i=0; i<M; i++) //Read informations of edges and insert into the Adjacent List
{
int _start, _dest, _weight;
edge * tmp = new edge;
in>>_start>>_dest>>_weight;
tmp->dest = _dest;
tmp->weight = _weight;
V[_start].outDegree++;
V[_dest].inDegree++;
AdjList[_start].push_back(*tmp);
}
V[s].dist = 0;
SELECTED_vertex.clear();
}
void relax(int u, int v, int weight) //The "relax" operation
{
if(V[v].dist > V[u].dist + weight)
{
V[v].dist = V[u].dist + weight;
V[v].parent = &V[u];
}
}
void print_path(vertex *s, vertex *v)
{
if(v == s)
cout<<s->num;
else if(v->parent == nullptr)
cout<<"No path from "<<s->num<<" to "<<v->num<<endl;
else
{
print_path(s,v->parent);
cout<<"->"<<v->num;
}
}
//Get the nearest vertex to the set of selected vertices
//Actually, this linear scan costed so much than I expected.
//Using a heap can make the time cost better
int get_nearest_vertex()
{
int _dist = INF;
int nearest;
for(int i=0;i<N;i++)
{
if(V[i].dist < _dist && V[i]._stat == UNSELECTED)
{
_dist = V[i].dist;
nearest = i;
}
}
return nearest;
}
void Dijkstra(int s) //The main function of Dijkstra algorithm
{
initialize(s);
int numof_UNSELECTED = N-1;
while(numof_UNSELECTED != 0)
{
int u = get_nearest_vertex();
SELECTED_vertex.push_back(u);
edge tmp;
for(int j=0; j<V[u].outDegree; j++)
{
tmp = AdjList[u][j];
relax(u,tmp.dest,tmp.weight);
}
V[u]._stat = SELECTED;
numof_UNSELECTED--;
}
}
int main()
{
in.open("Dijkstra.txt");
int s = 0;
Dijkstra(s);
cout<<"Succeed ! The distance of each vertex are :"<<endl;
for(int i=0; i<N; i++)
if(V[i].dist == INF)
cout<<"INF ";
else
cout<<V[i].dist<<" ";
cout<<endl<<"One of the shortest path is :"<<endl;
print_path(&V[0],&V[4]);
return 0;
}
/*
Pseudo Code :
Dijkstra(G,w,s)
S = empty set
Q = G.V - s
while Q != empty set
u = EXTRACT-MIN(Q)
S = S ∪ u
for each vertex v in AdjList[u]
relax(u,v,w)
*/
//Dijkstra.txt文件内容如下:
0 1 10
0 3 5
1 2 1
1 3 2
2 4 4
3 1 3
3 2 9
3 4 2
4 0 7
4 2 6
每一行的三个元素分别表示某条边的起始节点、终止节点、这条边的权重。
原文:http://my.oschina.net/bgbfbsdchenzheng/blog/488900