#include<iostream> #include<cctype> #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<algorithm> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 20; int x[MAXN], y[MAXN], line[MAXN][MAXN], n, dp[1 << 16]; void init() { memset(line, 0, sizeof line); memset(dp, 0x3f, sizeof dp); dp[0] = 0; for (int i = 0; i < n; ++i) for (int j = i + 1; j < n; ++j) { line[i][j] = (1 << i) | (1 << j); int dx = x[j] - x[i], dy = y[j] - y[i]; for (int k = j + 1; k < n; ++k) { int dx2 = x[k] - x[i], dy2 = y[k] - y[i]; //这里我用了向量平行的条件 if (dx2 * dy == dy2 * dx) line[i][j] |= (1 << k); } line[j][i] = line[i][j]; } } int dfs(int s) { int& ret = dp[s]; if (dp[s] < INF) return ret; int num = __builtin_popcount(s); //计算s中有几个1.很好用的函数 if (num <= 2) return ret = 1; int i = 0; while (!(s & (1 << i))) ++i; //找出第一个没被删除的点 for (int j = i + 1; j < n; ++j) //和其它点进行匹配。这里匹配次序是不会影响最终结果的 { if (s & (1 << j)) { ret = min(ret, dfs(s&(~line[i][j])) + 1); } } return ret; } int main() { int t; for (int kase = scanf("%d", &t); kase <= t; ++kase) { scanf("%d", &n); for (int i = 0; i < n; ++i) scanf("%d%d", x+i, y+i); init(); printf("Case %d: %d\n", kase, dfs((1 << n) - 1)); } return 0; }
版权声明:欢迎转载(^ω^)~不过转载请注明原文出处:http://blog.csdn.net/catglory ?(????)
[LightOJ 1018]Brush (IV)[状压DP]
原文:http://blog.csdn.net/catglory/article/details/47412409