首页 > 其他 > 详细

POJ 3070 Fibonacci(矩阵高速功率)

时间:2015-08-11 18:06:10      阅读:211      评论:0      收藏:0      [点我收藏+]

职务地址:POJ 3070

用这个题学会了用矩阵高速幂来高速求斐波那契数。

技术分享

依据上个公式可知,第1行第2列和第2行第1列的数都是第n个斐波那契数。所以构造矩阵。求高速幂就可以。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>

using namespace std;
const int mod=1e4;
struct matrix
{
    int ma[3][3];
}init, res;
matrix Mult(matrix x, matrix y)
{
    matrix tmp;
    int i, j, k;
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            tmp.ma[i][j]=0;
            for(k=0;k<2;k++)
            {
                tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
            }
        }
    }
    return tmp;
}
matrix Pow(matrix x, int k)
{
    int i, j;
    matrix tmp;
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            tmp.ma[i][j]=(i==j);
        }
    }
    while(k)
    {
        if(k&1) tmp=Mult(tmp,x);
        x=Mult(x,x);
        k>>=1;
    }
    return tmp;
}
int main()
{
    int k;
    while(scanf("%d",&k)!=EOF&&k>=0)
    {
        init.ma[0][0]=1;
        init.ma[0][1]=1;
        init.ma[1][0]=1;
        init.ma[1][1]=0;
        res=Pow(init,k);
        printf("%d\n",res.ma[0][1]);
    }
    return 0;
}


版权声明:本文博客原创文章,博客,未经同意,不得转载。

POJ 3070 Fibonacci(矩阵高速功率)

原文:http://www.cnblogs.com/mengfanrong/p/4721547.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!