Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
解题思路:
动态规划。用d来记录从根到页的最短路径,i为当前行数。则有
d[j] = d[j-1] + triangle[i][j],j==i时
d[j] = d[0] + triangle[i][0], j==0时
d[j] = min(d[j-1], d[j]) + triangle[i][j],其他。
注意计算d[j]时,会用到上一次的d[j-1],因此可以按d[i..0]的顺序来计算。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
if(n==0){
return 0;
}
if(n==1){
return triangle[0][0];
}
int d[n];
d[0] = triangle[0][0];
for(int i=1; i<n; i++){
for(int j=i; j>=0; j--){ //这里从由高到低
if(j==i){
d[j] = d[j-1] + triangle[i][j];
}else if(j==0){
d[j] = d[0] + triangle[i][0];
}else{
d[j] = min(d[j-1], d[j]) + triangle[i][j];
}
}
}
int minPath = d[0];
for(int i=1; i<n; i++){
minPath = min(d[i], minPath);
}
return minPath;
}
};版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/kangrydotnet/article/details/47447585