作者:摇摆少年梦
视频地址:http://www.xuetuwuyou.com/course/12
本节主要介绍的scala并发编程的基本思想,由于scala在2.10版本之后宣布使用akka作为其并发编程库,因此本节只进行基础性的内容介绍,后面将把重点放在akka框架的讲解上。
2003 年,Herb Sutter 在他的文章 “The Free Lunch Is Over” 中揭露了行业中最不可告人的一个小秘密,他明确论证了处理器在速度上的发展已经走到了尽头,并且将由全新的单芯片上的并行 “内核”(虚拟 CPU)所取代。这一发现对编程社区造成了不小的冲击,因为正确创建线程安全的代码,在理论而非实践中,始终会提高高性能开发人员的身价,而让各公司难以聘用他们。看上去,仅有少数人充分理解了 Java 的线程模型、并发 API 以及 “同步” 的含义,以便能够编写同时提供安全性和吞吐量的代码 —— 并且大多数人已经明白了它的困难所在(来源:http://www.ibm.com/developerworks/cn/java/j-scala02049.html)。
在Java中,要编写一个线程安全的程序并不是一件易事,例如:
class Account {
private int balance;
synchronized public int getBalance() {
return balance;
}
synchronized public void incrementBalance() {
balance++;
}
}
上面这段java代码虽然方法前面加了synchronized ,但它仍然不是线程安全的,例如,在执行下面两个语句
account.incrementBalance();
account.getBalance();
时,有可能account.incrementBalance()执行完成后,其它线程可能会获取对象的锁,修改account的balance,从而造成得不到预期结果的问题。解决问题的方法是将两个功能结合起来形成一个方法:
synchronized public int incrementAndGetBalance() {
balance++;
return balance;
}
但这可能并不是我们想要的,每次获取balance都要将balance增加, 这显然与实际不符。除此之外,java中的并发编程可能还会经常遇到死锁问题,而这个问题往往难调试,问题可能会随机性的出现。总体上来看,java的并发编程模型相对较复杂,难以驾驭。
Scala很好地解决了java并发编程的问题,要在scala中进行并发编程,有以下几种途径可以实现:
1 actor消息模型、akka actor并发模型。
2 Thread、Runnable
3 java.util.concurennt
4 第三方开源并发框架如Netty,Mina
在上述四种途径当中,利用 actor消息模型、akka actor并发模型是scala并发编程的首先,本节主要介绍actor消息模型,akka actor并发模型我们将放在后面的章节中介绍。
在scala中,通过不变对象来实现线程安全,涉及到修改对象状态时,则创建一个新的对象来实现,如:
//成员balance状态一旦被赋值,便不能更改
//因而它也是线程安全的
class Person(val age: Integer) {
def getAge() = age
}
object Person{
//创建新的对象来实现对象状态修改
def increment(person: Person): Person{
new Person(Person.getAge() + 1)
}
}
通过不变对象实现并发编程,可以简化编程模型,使并发程序更容易现实和控制。
java中的并发主要是通过线程来实现,各线程采用共享资源的机制来实现程序的并发,这里面着竞争资源的问题,虽然采用锁机制可以避免竞争资源的问题,但会存在死锁问题,要开发一套健壮的并发应用程序具有一定的难度。而scala的并发模型相比于java它更简单,它采用消息传递而非资源共享来实现程序的并发,消息传递正是通过Actor来实现的。下面的代码给出了Actor使用示例
//混入Actor特质,然后实现act方法
//如同java中的Runnable接口一样
//各线程的run方法是并发执行的
//Actor中的act方法也是并发执行的
class ActorDemo extends Actor{
//实现 act()方法
def act(){
while(true){
//receive从邮箱中获取一条消息
//然后传递给它的参数
//该参数是一个偏函数
receive{
case "actorDemo" => println("receive....ActorDemo")
}
}
}
}
object ActorDemo extends App{
val actor=new ActorDemo
//启动创建的actor
actor.start()
//主线程发送消息给actor
actor!"actorDemo"
}
下面给的是recieve方法的部分源代码
def receive[R](f: PartialFunction[Any, R]): R = {
assert(Actor.self(scheduler) == this, "receive from channel belonging to other actor")
synchronized {
if (shouldExit) exit() // links
drainSendBuffer(mailbox)
}
var done = false
while (!done) {
val qel = mailbox.extractFirst((m: Any, replyTo: OutputChannel[Any]) => {
senders = replyTo :: senders
val matches = f.isDefinedAt(m)
senders = senders.tail
matches
})
................
从上述代码中不能看出,receive方法接受的参数是一个偏函数,并且是通过mailbox来实现消息的发送与接收。
在前述的class ActorDemo中,receive方法的参数为
{
case "actorDemo" => println("receive....ActorDemo")
}
该代码块在执行时被转换为一个PartialFunction[Any, R]的偏函数,其中R是偏函数的返回类型,对应case 语句=> 右边的部分,在本例子中R是Unit类型,而Any对应的则对应case语句的模式部分。
前面给的是通过extends Actor的方式来创建一个Actor类,其实scala.actors.Actor中提供了一个actor工具方法,可以非常方便地直接创建Actor对象如:
import scala.actors.Actor._
object ActorFromMethod extends App{
//通过工具方法actor直接创建Actor对象
val methodActor = actor {
for (i <- 1 to 5)
println("That is the question.")
Thread.sleep(1000)
}
}
上述代码创建的actor对象无需调用start方法,对象创建完成后会立即执行。
scala中本地线程也可用作Actor,下面的代码演示了如何在REPL命令行中将本地线程当作Actor;
scala> import scala.actors.Actor._
import scala.actors.Actor._
//self引用本地线程,并发送消息
scala> self ! "hello"
//接收消息
scala> self.receive { case x:String => x }
res1: String = hello
上述代码中,如果发送的消息不是String类型的,线程将被阻塞,为避免这个问题,可以采用receiveWithin方法,
scala> self ! 123
scala> self.receiveWithin(1000) { case x => x }
res6: Any = 123
scala> self.receiveWithin(1000) { case x => x }
res7: Any = TIMEOUT
scala中的Actor也是构建在java线程基础之上的,前面在使用Actor时都是通过创建Actor对象,然后再调用act方法来启动actor。我们知道,java中线程的创建、销毁及线程间的切换是比较耗时的,因此实际中尽量避免频繁的线程创建、销毁和销毁。Scala中提供react方法,在方法执行结束后,线程仍然被保留。下面的代码演示了react方法的使用:
package cn.scala.xtwy.concurrency
import scala.actors._
object NameResolver extends Actor {
import java.net.{ InetAddress, UnknownHostException }
def act() {
react {
//匹配主线程发来的("www.scala-lang.org", NameResolver)
case (name: String, actor: Actor) =>
//向actor发送解析后的IP地址信息
//由于本例中传进来的actor就是NameResolver自身
//也即自己给自己发送消息,并存入将消息存入邮箱
actor ! getIp(name)
//再次调用act方法,试图从邮箱中提取信息
//如果邮箱中信息为空,则进入等待模式
act()
case "EXIT" =>
println("Name resolver exiting.")
// quit
//匹配邮箱中的单个信息,本例中会匹配邮箱中的IP地址信息
case msg =>
println("Unhandled message: " + msg)
act()
}
}
def getIp(name: String): Option[InetAddress] = {
try {
Some(InetAddress.getByName(name))
} catch {
case _: UnknownHostException => None
}
}
}
object Main extends App{
NameResolver.start()
//主线程向NameResolver发送消息("www.scala-lang.org", NameResolver)
NameResolver ! ("www.scala-lang.org", NameResolver)
NameResolver ! ("wwwwww.scala-lang.org", NameResolver)
}
从上述代码中可以看到,通过在react方法执行结束时加入act方法,方法执行完成后没有被销毁,而是继续试图从邮箱中获取信息,获取不到则等待。
Actor有下列几种状态:
本小节的例子来源:http://www.ibm.com/developerworks/cn/java/j-scala04109.html
1 receive方法单次执行:
object Actor2
{
case class Speak(line : String)
case class Gesture(bodyPart : String, action : String)
case class NegotiateNewContract()
def main(args : Array[String]) =
{
val badActor =
actor
{
//这里receive方法只会匹配一次便结束
receive
{
case NegotiateNewContract =>
System.out.println("I won‘t do it for less than $1 million!")
case Speak(line) =>
System.out.println(line)
case Gesture(bodyPart, action) =>
System.out.println("(" + action + "s " + bodyPart + ")")
case _ =>
System.out.println("Huh? I‘ll be in my trailer.")
}
}
//receive方法只处理下面这条语句发送的消息
badActor ! NegotiateNewContract
//下面其余的消息不会被处理
badActor ! Speak("Do ya feel lucky, punk?")
badActor ! Gesture("face", "grimaces")
badActor ! Speak("Well, do ya?")
}
}
上述代码只会输出:
I won’t do it for less than $1 million!
即后面发送的消息如:
badActor ! Speak(“Do ya feel lucky, punk?”)
badActor ! Gesture(“face”, “grimaces”)
badActor ! Speak(“Well, do ya?”)
不会被处理。这是因为receive方法的单次执行问题。
2 能够处理多个消息的receive方法:
object Actor2
{
case class Speak(line : String);
case class Gesture(bodyPart : String, action : String);
case class NegotiateNewContract()
//处理结束消息
case class ThatsAWrap()
def main(args : Array[String]) =
{
val badActor =
actor
{
var done = false
//while循环
while (! done)
{
receive
{
case NegotiateNewContract =>
System.out.println("I won‘t do it for less than $1 million!")
case Speak(line) =>
System.out.println(line)
case Gesture(bodyPart, action) =>
System.out.println("(" + action + "s " + bodyPart + ")")
case ThatsAWrap =>
System.out.println("Great cast party, everybody! See ya!")
done = true
case _ =>
System.out.println("Huh? I‘ll be in my trailer.")
}
}
}
//下面所有的消息都能被处理
badActor ! NegotiateNewContract
badActor ! Speak("Do ya feel lucky, punk?")
badActor ! Gesture("face", "grimaces")
badActor ! Speak("Well, do ya?")
//消息发送后,receive方法执行完毕
badActor ! ThatsAWrap
}
}
3 Actor后面实现原理仍然是线程的证据
object Actor3
{
case class Speak(line : String);
case class Gesture(bodyPart : String, action : String);
case class NegotiateNewContract;
case class ThatsAWrap;
def main(args : Array[String]) =
{
def ct =
"Thread " + Thread.currentThread().getName() + ": "
val badActor =
actor
{
var done = false
while (! done)
{
receive
{
case NegotiateNewContract =>
System.out.println(ct + "I won‘t do it for less than $1 million!")
case Speak(line) =>
System.out.println(ct + line)
case Gesture(bodyPart, action) =>
System.out.println(ct + "(" + action + "s " + bodyPart + ")")
case ThatsAWrap =>
System.out.println(ct + "Great cast party, everybody! See ya!")
done = true
case _ =>
System.out.println(ct + "Huh? I‘ll be in my trailer.")
}
}
}
System.out.println(ct + "Negotiating...")
badActor ! NegotiateNewContract
System.out.println(ct + "Speaking...")
badActor ! Speak("Do ya feel lucky, punk?")
System.out.println(ct + "Gesturing...")
badActor ! Gesture("face", "grimaces")
System.out.println(ct + "Speaking again...")
badActor ! Speak("Well, do ya?")
System.out.println(ct + "Wrapping up")
badActor ! ThatsAWrap
}
}
执行结果如下:
Thread main: Negotiating...
Thread main: Speaking...
Thread main: Gesturing...
Thread main: Speaking again...
Thread main: Wrapping up
Thread ForkJoinPool-1-worker-13: I won‘t do it for less than $1 million!
Thread ForkJoinPool-1-worker-13: Do ya feel lucky, punk?
Thread ForkJoinPool-1-worker-13: (grimacess face)
Thread ForkJoinPool-1-worker-13: Well, do ya?
Thread ForkJoinPool-1-worker-13: Great cast party, everybody! See ya!
从上述执行结果可以看到,Actor最终的实现仍然是线程,只不过它提供的编程模型与java中的编程模型不一样而已。
4 利用!?发送同步消息,等待返回值
import scala.actors._,Actor._
object ProdConSample2
{
case class Message(msg : String)
def main(args : Array[String]) : Unit =
{
val consumer =
actor
{
var done = false
while (! done)
{
receive
{
case msg =>
System.out.println("Received message! -> " + msg)
done = (msg == "DONE")
reply("Already RECEIVED....."+msg)
}
}
}
System.out.println("Sending....")
//获取响应值
val r= consumer !? "Mares eat oats"
println("replyed message"+r)
System.out.println("Sending....")
consumer !? "Does eat oats"
System.out.println("Sending....")
consumer !? "Little lambs eat ivy"
System.out.println("Sending....")
consumer !? "Kids eat ivy too"
System.out.println("Sending....")
consumer !? "DONE"
}
}
代码执行结果:
Sending....
Received message! -> Mares eat oats
replyed messageAlready RECEIVED.....Mares eat oats
Sending....
Received message! -> Does eat oats
Sending....
Received message! -> Little lambs eat ivy
Sending....
Received message! -> Kids eat ivy too
Sending....
Received message! -> DONE
通过上述代码执行结果可以看到,!?因为因为是同步消息,发送完返回结果后才会接着发送下一条消息。
5 Spawn方法发送消息
object ProdConSampleUsingSpawn
{
import concurrent.ops._
def main(args : Array[String]) : Unit =
{
// Spawn Consumer
val consumer =
actor
{
var done = false
while (! done)
{
receive
{
case msg =>
System.out.println("MESSAGE RECEIVED: " + msg)
done = (msg == "DONE")
reply("RECEIVED")
}
}
}
// Spawn Producer
spawn //spawn是一个定义在current.ops中的方法
{
val importantInfo : Array[String] = Array(
"Mares eat oats",
"Does eat oats",
"Little lambs eat ivy",
"A kid will eat ivy too",
"DONE"
);
importantInfo.foreach((msg) => consumer !? msg)
}
}
}
6 !! 发送异步消息,返回值是 Future[Any]
object ProdConSample3
{
case class Message(msg : String)
def main(args : Array[String]) : Unit =
{
val consumer =
actor
{
var done = false
while (! done)
{
receive
{
case msg =>
System.out.println("Received message! -> " + msg)
done = (msg == "DONE")
reply("Already RECEIVED....."+msg)
}
}
}
System.out.println("Sending....")
//发送异步消息,返回
val replyFuture= consumer !! "Mares eat oats"
val r=replyFuture()
println("replyed message*****"+r)
System.out.println("Sending....")
consumer !! "Does eat oats"
System.out.println("Sending....")
consumer !! "Little lambs eat ivy"
System.out.println("Sending....")
consumer !! "Kids eat ivy too"
System.out.println("Sending....")
consumer !! "DONE"
}
}
执行结果:
Sending....
Received message! -> Mares eat oats
replyed message*****Already RECEIVED.....Mares eat oats
Sending....
Sending....
Sending....
Received message! -> Does eat oats
Sending....
Received message! -> Little lambs eat ivy
Received message! -> Kids eat ivy too
Received message! -> DONE
通过上述代码的执行结果可以看到,!!的消息发送是异步的,消息发送后无需等待结果返回便执行下一条语句,但如果要获取异步消息的返回值,如:
val replyFuture= consumer !! "Mares eat oats"
val r=replyFuture()
则执行到这两条语句的时候,程序先被阻塞,等获得结果之后再发送其它的异步消息。
7 loop方法实现react
object LoopReact extends App{
val a1 = Actor.actor {
//注意这里loop是一个方法,不是关键字
//实现类型while循环的作用
loop {
react {
//为整型时结束操作
case x: Int=>println("a1 stop: " + x); exit()
case msg: String => println("a1: " + msg)
}
}
}
a1!("我是摇摆少年梦")
a1.!(23)
}
添加公众微信号,可以了解更多最新Spark、Scala相关技术资讯
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/lovehuangjiaju/article/details/47623177