首页 > 其他 > 详细

矩阵连乘(3)

时间:2015-08-17 00:58:49      阅读:135      评论:0      收藏:0      [点我收藏+]
Problem Description
As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N) = F(N - 1) + F(N - 2) (N >= 2).Now we define another kind of Fibonacci : A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.

 

 

Input
There are several test cases.
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 231 – 1
X : 2<= X <= 231– 1
Y : 2<= Y <= 231 – 1
 

 

Output
For each test case , output the answer of S(n).If the answer is too big , divide it by 10007 and give me the reminder.
 

 

Sample Input
2 1 1 3 2 3
 

 

Sample Output
6 196
 
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const long long mod=10007;

typedef struct
{
  long long m[4][4];
}mat;

mat I={1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1};

mat calc(mat a,mat b)
{
    int i,j,k;
    mat c;
    for(i=0;i<4;i++)
    for(j=0;j<4;j++)
    {
        c.m[i][j]=0;
       for(k=0;k<4;k++)
      {
        c.m[i][j]+=(a.m[i][k]*b.m[k][j])%mod;
      }
      c.m[i][j]=c.m[i][j]%mod;
    }
    return c;
}

mat matirx(mat P,long long n)
{
    mat m=P,b=I;
    while(n>=1)
    {
        if(n&1) b=calc(b,m);
        n>>=1;
        m=calc(m,m);
    }
    return b;
}

int main()
{
    long long n,x,y;
    while(scanf("%lld%lld%lld",&n,&x,&y)!=EOF)
    {
        long long sum=0;
        x=x%mod;
        y=y%mod;   //2*x*y可能会溢出
        mat P={x*x,2*x*y,y*y,0,x,y,0,0,1,0,0,0,1,0,0,1};
        mat a;
        a=matirx(P,n);
        sum=(a.m[3][0]+a.m[3][1]+a.m[3][2]+a.m[3][3])%mod;
        printf("%lld\n",sum);
    }
    return 0;
}

 

矩阵连乘(3)

原文:http://www.cnblogs.com/chen9510/p/4735370.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!