首页 > Web开发 > 详细

AutoEncoder一些实验结果,并考虑

时间:2015-08-17 13:46:00      阅读:298      评论:0      收藏:0      [点我收藏+]

看之前Autoencoder什么时候,我做了一些练习这里:http://ufldl.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder 。其实 从11月开始做。有没有经过调试,后来,加班太多,我没有那么做。抽出时间调了一天。最终顺利完毕了。又拖到这周末才開始把实验结果整理成文。看来,做事还得趁热打铁,一气呵成。时间一久。积极性就没了。

最初依照练习中的建议,先实现了一个主要的代价函数。没有增加权值惩处项和稀疏约束项。梯度检查都过了,跑出来的cost看起来也非常收敛。但是权值的可视化结果就是不正确,见图1 。为了验证代码的正确性。还利用AE代码实现了一个8维输入的BC编码器,结果也是非常理想;又怀疑训练样本採样策略不够随机。从网上找了个代码换了下。结果还是不行。

重复看了代码也没发现问题,想到加上权值惩处项和稀疏约束项,还是不正确。这下疯了。

后来又折腾好久,最终OK了,原来加上权值惩处项和稀疏约束项就能解决。仅仅只是之前,改动的文件,不是MATLAB真正执行的文件。。。

AE的原理就不说了,现成代码在网上也能够找到。把几个实验结果贴一下,供參考。图1a是没有加稀疏项的可视化权值,图 1b是没有加权值惩处项的结果。看起来都是无规律的。图1加了权值惩处项和稀疏约束项。得到了符合预期的权值结果。依据材料中的解释就是图像的边缘。对于简单的BC编码,这两个约束项似乎没有影响。但通常来说。权值惩处项是为了约束W的取值以防止过拟合。而稀疏项的存在则是为了更好的表示特征。

技术分享技术分享

                                       a                                                                                     b                                                                                

技术分享

                                       c

图1


AE实验最初来至于对人类视觉的研究,所以取的训练图像都是一些自然风景图片。依照《Natural Image Statistics》这本书的说法,之所以选取自然图像,是由于这些自然图像促进了人类视觉的进化,也就说人类视觉是在适应自然图像的过程中得到进化的,对自然图像中的结构特征是敏感的。而像建筑。汽车这些包括现代物体的图像。则没有起到类似的作用。

尽管这么说没错,但人类毕竟还是能识别汽车这些物体的。于是我做了个实验验证了一下:拿包括汽车。地铁2号线,东方明珠的一些图像训练相同的AE,结果见图2。

技术分享

图2

和拿风景图像做出来的结果并没有太大不同。尽管看起来稍有不同,但即使同一训练集中选出的不相同样本得到的结果也是不同的,所以能够觉得是一样的吧。可见图像内容的影响并没有那本书中说得那么玄乎(实践,才是检验真理的唯一标准啊)。尝试解释一下。尽管人类视觉是为了自然环境而进化的,但显然其适应能力仅仅受限于物理层面的因素,如光波强度。频率等。至于内容是一辆车,还是一头牛,其图像形成的低层物理特征并没有统计上的差别。因此对于视觉低层处理是一样的(也许对高层级的处理有影响)。再发散一下,对于全然人造的图像,如屏幕截图,网页页面截图等。是否应该具有不同于普通光影图像的特征?是否无法训练出像图1c那样的边缘来?我还没尝试,有兴趣的同志能够验证一下。

无聊又验证了一下样本数对于训练结果的影响。

图3a。图3b,图3c各自是100个样本,10 0000个样本和100 0000个样本训练的结果。看来。100个样本对于成功抽取特征显然是不够的。貌似图c比图b更清晰?

技术分享技术分享

                                      a                                                                                              b                 

技术分享

                                         c                                                                         

                                                                                                画画3


版权声明:本文博客原创文章,博客,未经同意,不得转载。

AutoEncoder一些实验结果,并考虑

原文:http://www.cnblogs.com/gcczhongduan/p/4736184.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!