I/O接口的作用
主机与外界交换信息称为输入/输出(I/O)。主机与外界的信息交换是通过输入/输出设备进行的。一般的输入/输出设备都是机械的或机电相结合的产物,比如常规的外设有键盘、显示器、打印机、扫描仪、磁盘机、鼠标器等,它们相对于高速的中央处理器来说,速度要慢得多。此外,不同外设的信号形式、数据格式也各不相同。因此,外部设备不能与CPU直接相连,需要通过相应的电路来完成它们之间的速度匹配、信号转换,并完成某些控制功能。通常把介于主机和外设之间的一种缓冲电路称为I/O接口电路,简称I/O接口(Interface),如图7.1所示。对于主机,I/O接口提供了外部设备的工作状态及数据;对于外部设备,I/O接口记忆了主机送给外设的一切命令和数据,从而使主机与外设之间协调一致地工作。
对于微型计算机来说,设计微处理器CPU时,并不设计它与外设之间的接口部分,而是将输入/输出设备的接口电路设计成相对独立的部件,通过它们将各种类型的外设与CPU连接起来构成完整的微型计算机硬件系统。 所以,一台微型计算机的输入/输出系统应该包括I/O接口、I/O设备及相关的控制软件。一个微机系统的综合处理能力、系统的可靠性、兼容性、性能价格比、甚至在某个场合能否使用都和I/O系统有着密切的关系。输入/输出系统是计算机系统的重要组成部分之一,任何一台高性能计算机,如果没有高质量的输入/输出系统与之配合工作,计算机的高性能便无法发挥出来。
7.1.2 CPU与外设交换的信息
主机与I/O设备之间交换的信息可分为数据信息、状态信息和控制信息三类。
一.数据信息
数据信息又分为数字量、模拟量和开关量三种形式。
1. 数字量
数字量是计算机可以直接发送、接收和处理的数据。例如由键盘、显示器、打印机及磁盘等I/O外设与 CPU交换的信息,它们是以二进制形式表示的数或以ASCII码表示的数符。
2. 模拟量
当计算机应用于控制系统中时,输入的信息一般为来自现场的连续变化的物理量,如温度、压力、流量、位移、湿度等,这些物理量通过传感器并经放大处理得到模拟电压或电流,这些模拟量必需先经过模拟量向数字量的转换(A/D转换)后才能输入计算机。反过来,计算机输出的控制信号都是数字量,也必须先经过数字量向模拟量的转换(D/A转换),把数字量转换成模拟量才能去控制现场。
3. 开关量
开关量可表示两个状态,如开关的断开和闭合,机器的运转与停止,阀门的打开与关闭等。这些开关量通常要经过相应的电平转换才能与计算机连接。开关量只要用一位二进数即可表示。
二.状态信息
状态信息作为CPU与外设之间交换数据时的联络信息,反映了当前外设所处的工作状态,是外设通过接口送往CPU的。CPU通过对外设状态信号的读取,可得知输入设备的数据是否准备好、输出设备是否空闲等情况。对于输入设备,一般用准备好(READY)信号的高低来表明待输入的数据是否准备就绪;对于输出设备,则用忙(BUSY)信号的高低表示输出设备是否处于空闲状态,如为空闲状态,则可接收CPU输出的信息,否则CPU要暂停送数。因此,状态信息能够保障CPU与外设正确进行数据交换。
三.控制信息
控制信息是CPU通过接口传送给外设的,CPU通过发送控制信息设置外设(包括接口)的工作模式、控制外设的工作。如外设的启动信号和停止信号就是常见的控制信息。实际上,控制信息往往随着外设的具体工作原理不同而含义不同。
虽然数据信息、状态信息和控制信息含义各不相同,但在微型计算机系统中,CPU通过接口和外设交换信息时,只能用输入指令(IN)和输出指令 (OUT)传送数据,所以状态信息、控制信息也是被作为数据信息来传送的,即把状态信息作为—种输入数据,而把控制信息作为一种输出数据,这样,状态信息和控制信息也通过数据总线来传送。但在接口中,这三种信息是在不同的寄存器中分别存放的。
7.1.3 I/O接口的基本结构
I/O接口的基本结构如图7.2所示。每个接口电路中都包含一组寄存器, CPU和外设进行信息交换时,各类信息在接口中存入不同的寄存器,一般称这些寄存器为I/O端口,简称为口(Port)。用来保存CPU和外设之间传送的数据(如数字、字符及某种特定的编码等)、对输入/输出数据起缓冲作用的数据寄存器称为数据端口;用来存放外设或者接口部件本身状态的状态寄存器称为状态端口;用来存放CPU发往外设的控制命令的控制寄存器称为控制端口。
正如每个存储单元都有一个物理地址一样,每个端口也有一个地址与之相对应,该地址称为端口地址。有了端口地址,CPU对外设的输入/输出操作实际上就是对I/O接口中各端口的读/写操作。数据端口一般是双向的,数据是输入还是输出,取决于对该端口地址进行操作时CPU发往接口电路的读/写控制信号。由于状态端口只作输入操作、控制端口只作输出操作,所以,有时为了节省系统地址空间,在设计接口时往往将这两个端口共用一个端口地址,再用读/写信号来分别选择访问。
应该指出,输入/输出操作所用到的地址总是对端口而言,而不是对接口而言的。接口和端口是两个不同的概念,若干个端口加上相应的控制电路才构成接口。
7.1.4 I/O端口的编址
微型计算机系统中I/O端口编址方式有两种:即I/O端口与内存单元统一编址和 I/O端口与内存单元独立编址。
一.I/O端口与内存单元统一编址
这种编址方式,是对I/O端口和存储单元按照存储单元的编址方法统一编排地址号,由I/O端口地址和存储单元地址共同构成一个统一的地址空间,例如,对于一个有16根地址线的微机系统,若采用统一编址方式,其地址空间的结构如图7.3所示。 采用统一编址方式后,CPU对I/O端口的输入/输出操作如同对存储单元的读/写操作一样,所有访问内存的指令同样都可用于访问I/O端口,因此无需专门的I/O指令,从而简化了指令系统的设计;同时,对存储器的各种寻址方式也同样适用于对I/O端口的访问,给使用者提供了很大的方便。但由于
I/O端口占用了一部分存储器地址空间,相对减少了内存的地址可用范围。
二.I/O端口与内存单元独立编址
在这种编址方式中,建立了两个地址空间,一个为内存地址空间,一个为I/O地址空间。内存地址空间和I/O地址空间是相对独立的,通过控制总线来确定CPU到底要访问内存还是I/O端口。为确保控制总线发出正确的信号,除了要有访问内存的指令之外,系统还要提供用于CPU与I/O端口之间进行数据传输的输入/输出指令。
80x86CPU组成的微机系统都采用独立编址方式。在8086/8088系统中,共有20根地址线对内存寻址,内存的地址范围是00000H~FFFFFH;用地址总线的低16位对I/O端口寻址,所以I/O端口的地址范围从 0000H~FFFFH,如图7.4所示。CPU在访问内存和外设时,使用了不同的控制信号来加以区分。例如,当8086CPU的M/IO信号为1时,表示地址总线上的地址是一个内存地址;为0时,则表示地址总线上的地址是一个端口地址。
采用独立编址方式后,存储器地址空间不受I/O端口地址空间影响,专用的输入/输出指令与访问存储器指令有明显区别,便于理解和检查。但是,专用I/O指令增加了指令系统复杂性,且I/O指令类型少,程序设计灵活性较差;此外,还要求CPU提供专门的控制信号以区分对存储器和I/O端口的操作,增加了控制逻辑的复杂性。
三、I/O端口的地址译码
微机系统常用的I/O接口电路一般都被设计成通用的I/O接口芯片,一个接口芯片内部可以有若干可寻址的端口。因此,所有接口芯片都有片选信号线和用于片内端口寻址的地址线。例如,某接口芯片内有四个端口地址,则该芯片外就会有两根地址线。本书第八章中将详细介绍几种常用的I/O接口芯片。
I/O端口地址译码的方法多样,一般的原则是把CPU用于I/O端口寻址的地址线分为高位地址线和低位地址线两部分,将低位地址线直接连到I/O接口芯片的相应地址引脚,实现片内寻址,即选中片内的端口;将高位地址线与CPU的控制信号组合,经地址译码电路产生I/O接口芯片的片选信号。
io口的作用
原文:http://blog.csdn.net/shuju345/article/details/47724567