笔者最近开始学习了二叉树这种数据结构,于是写出了一个二叉树的实现~
二叉树真是个好东西 =。=
该图显示了在二叉树中插入一个节点的步骤...下面就用这个二叉树做测试好了
/** "BST.h" * The Binary Search Tree Data Structure in C++ * Time Cost : Inorder / Preorder / Postorder Traversal : O(n) * Search / Find / Insert / Delete / Successor / Predecessor / Minimum / Maximum : O(h) * Transplant : O(1) * Thanks to Introduction to Algorithms (CLRS) Chapter 12 * Thanks to Stanford MOOC of "Algorithms : Part I" * Author: Zheng Chen / Arclabs001 * Email : chenzheng17@yahoo.com * Copyright 2015 Xi‘an University of Posts & Telecommunications. All rights reserved. */ #include <iostream> #include <stack> using namespace std; struct TreeNode { int key; TreeNode *parent; TreeNode *left, *right; TreeNode& operator = (TreeNode& node) //Reload the "=" for assignment { this->key = node.key; this->parent = node.parent; this->left = node.left; this->right = node.right; return *this; } bool operator < (TreeNode& node) const { return this->key < node.key;} bool operator > (TreeNode& node) const { return this->key > node.key;} }; class Binary_Search_Tree { private: TreeNode * root; int _size; TreeNode * Tree_Minimum(TreeNode * x); //Get the minimum key in x‘s posterity and return the pointer to that node TreeNode * Tree_Maximum(TreeNode * x); //Get the maximum key in x‘s posterity and return the pointer to that node public: void Tree_Insert(int _key); //Insert a node valued "_key" to the tree Binary_Search_Tree() {root = nullptr; _size = 0;} //Constructor void Inorder_Traversal(); void Preorder_Traversal(); void Postorder_Traversal(); void Transplant(TreeNode * u, TreeNode * v); bool Tree_Delete(int _key); TreeNode * Find(int _key); TreeNode * Tree_Successor(TreeNode * x); TreeNode * Tree_Predecessor(TreeNode * x); TreeNode * Tree_getMinimum() { return Tree_Minimum(root);} TreeNode * Tree_getMaximum() { return Tree_Maximum(root);} }; void Inorder_Tree_Walk(TreeNode * root) //The recursion version of Inorder Traversal { if(root != nullptr) { Inorder_Tree_Walk(root->left); cout<<root->key<<" "; Inorder_Tree_Walk(root->right); } } void Binary_Search_Tree::Inorder_Traversal(/*TreeNode * root */) //The circulation version of Inorder Traversal { cout<<"Inorder Traversal : "; stack<TreeNode *> TreeNode_Stack; TreeNode * p = root; while(p!=nullptr || !TreeNode_Stack.empty()) { while(p!=nullptr) { TreeNode_Stack.push(p); p = p->left; } if(!TreeNode_Stack.empty()) { p = TreeNode_Stack.top(); TreeNode_Stack.pop(); cout<<p->key<<" "; p = p->right; } } cout<<endl; } void Preorder_Tree_Walk(TreeNode * root) //The recursion version of Preorder Traversal { if(root != nullptr) { cout<<root->key<<" "; Preorder_Tree_Walk(root->left); Preorder_Tree_Walk(root->right); } } void Binary_Search_Tree::Preorder_Traversal(/*TreeNode * root */) //The circulation version of Preorder Traversal { cout<<"Preorder Traversal : "; stack<TreeNode *> TreeNode_Stack; TreeNode * p = root; while(p!=nullptr || !TreeNode_Stack.empty()) { while(p!=nullptr) { TreeNode_Stack.push(p); cout<<p->key<<" "; p = p->left; } if(!TreeNode_Stack.empty()) { p = TreeNode_Stack.top(); TreeNode_Stack.pop(); p = p->right; } } cout<<endl; } void Postorder_Tree_Walk(TreeNode * root) //The recursion version of Postorder Traversal { if(root != nullptr) { Postorder_Tree_Walk(root->left); Postorder_Tree_Walk(root->right); cout<<root->key<<" "; } } void Binary_Search_Tree::Postorder_Traversal(/*TreeNode * root */) //The circulation version of Postorder Traversal { cout<<"Postorder Traversal : "; int flag_visited[_size]; stack<TreeNode *> TreeNode_Stack; TreeNode * p = root; while(p!=nullptr) { TreeNode_Stack.push(p); p = p->left; flag_visited[TreeNode_Stack.size()] = 0; } while(!TreeNode_Stack.empty()) { p = TreeNode_Stack.top(); while(p!=nullptr && p->left!=nullptr && flag_visited[(int)TreeNode_Stack.size()]==0) { flag_visited[(int)TreeNode_Stack.size()] = 1; p = p->right; while(p!=nullptr) { TreeNode_Stack.push(p); p = p->left; flag_visited[(int)TreeNode_Stack.size()] = 0; } } p = TreeNode_Stack.top(); cout<<p->key<<" "; TreeNode_Stack.pop(); } cout<<endl; } TreeNode * Tree_Search(TreeNode * root, int _key) //The recursion version of Search a node valued key { if(root==nullptr || root->key==_key) { return root; } else if(root->key > _key) { return Tree_Search(root->left, _key); } else { return Tree_Search(root->right, _key); } } TreeNode * Binary_Search_Tree::Find(/*TreeNode * root,*/ int _key) //The circulation version of Search { TreeNode * p = root; while(p != nullptr && p->key!=_key) { if(p->key > _key) p = p->left; else p = p->right; } return p; } //Get the minimum key in x‘s posterity and return the pointer to that node TreeNode * Binary_Search_Tree::Tree_Minimum(TreeNode * root) { TreeNode * p = root; while(p->left != nullptr) { p = p->left; } return p; } //Get the maximum key in x‘s posterity and return the pointer to that node TreeNode * Binary_Search_Tree::Tree_Maximum(TreeNode * root) { TreeNode * p = root; while(p->right != nullptr) { p = p->right; } return p; } TreeNode * Binary_Search_Tree::Tree_Successor(TreeNode * x) //Find the successor in "Inorder Traversal Order" { if(x->right!=nullptr) { return Tree_Minimum(x->right); } TreeNode * p = x->parent; while(p!=nullptr && x==p->right) { x = p; p = p->parent; } return p; } TreeNode * Binary_Search_Tree::Tree_Predecessor(TreeNode * x) //Find the predecessor in "Inorder Traversal Order" { if(x->left!=nullptr) { return Tree_Maximum(x->left); } TreeNode * p = x->parent; while(p!=nullptr && x==p->left) { x = p; p = p->parent; } return p; } void Binary_Search_Tree::Tree_Insert(int _key) //Insert a node into the tree valued key { TreeNode * z = new TreeNode; z->key = _key; z->left = z->right = nullptr; TreeNode * x = root; TreeNode * y = nullptr; while(x!=nullptr) //Find the parent of the new node { y = x; if(z->key < x->key) { x = x->left; } else { x = x->right; } } z->parent = y; if(y==nullptr) //When the tree is empty root = z; else if (z->key < y->key) { y->left = z; } else { y->right = z; } _size++; } //Replace the subTree rooted u with the subTree v void Binary_Search_Tree::Transplant(TreeNode * u, TreeNode * v) { if(u->parent == nullptr) { root = v; } else if(u == u->parent->left) { u->parent->left = v; } else { u->parent->right = v; } if(v != nullptr) v->parent = u->parent; } bool Binary_Search_Tree::Tree_Delete(int _key) //Delete the node valued key { TreeNode * z = Find(_key); if(z == nullptr) { cout<<"Error : No node valued "<<_key<<" !"<<endl; return false; } if(z->left == nullptr) { Transplant(z, z->right); } else if(z->right == nullptr) { Transplant(z, z->left); } else { TreeNode * y = Tree_Minimum(z->right); if(y->parent != z) { Transplant(y, y->right); y->right = z->right; y->right->parent = y; } Transplant(z, y); y->left = z->left; y->left->parent = y; } delete z; --_size; return true; }
下面就测试这些接口了:
//"main.cpp" #include "BST.h" int _arr[] = {12,5,18,2,9,15,19,17}; int main() { Binary_Search_Tree T; //Test the Constructor for(int i=0; i<8; i++) { T.Tree_Insert(_arr[i]); //Test the Insert function } T.Inorder_Traversal(); //Test the inorder traversal function T.Tree_Insert(13); T.Inorder_Traversal(); TreeNode * tmp = T.Tree_Successor(T.Find(2)); //Test the Search and Successor function cout<<endl<<"The Node after "<<2<<" in the inorder traversal order is : "<<tmp->key<<endl; tmp = T.Tree_getMaximum(); //Test the maximum function cout<<"The largest node is : "<<tmp->key<<endl<<endl; T.Tree_Delete(9); //Test the delete function T.Inorder_Traversal(); //Test the inorder traversal function T.Preorder_Traversal(); //Test the preorder traversal function T.Postorder_Traversal(); //Test the postorder traversal function cout<<endl; T.Tree_Delete(1); //Test the delete function when there is no node valued "1". return 0; }
数据结构-二叉搜索树(Binary Search Tree)的C++实现模板
原文:http://my.oschina.net/bgbfbsdchenzheng/blog/493629