什么是红黑树呢?顾名思义,跟枣树类似,红黑树是一种叶子是黑色果子是红色的树。。。
当然,这个是我说的。。。
《算法导论》上可不是这么说的:
如果一个二叉查找树满足下面的红黑性质,那么则为一个红黑树。
1)每个节点或是红的,或者是黑的。
2)每个叶子节点(NIL)是黑色的
3)如果一个节点是红色的,那么他的两个儿子都是黑的。
4)根节点是黑色的。
5)对于每个节点,从该节点到子孙节点的所有路径上包含相同数目的黑色节点。
我们在整个过程中会用到这些性质,当然,为了公平起见,其实即使你不知道这些性质,这个题目也是可以完成的(为什么不早说。。。。)。在红黑树的各种操作中,其核心操作被称为旋转,那么什么是旋转呢,我们来看一个例子:
假设我们这里截取红黑树的一部分,放在左边,通过操作如果可以把他转化为右边的形式,那么我们就称将根为x的子树进行了左旋,反之我们称将根为Y的树进行了右旋:
恰好慢板同学把自己红黑树弄乱了,然后请你帮忙进行修复,他将向你描述他的红黑树(混乱的。。。)。然后告诉他需要用哪种方式旋转某个节点。在你完成工作之后,直接向大黄提交新的树的中序遍历结果就好了。
Hint:
在这里好心的慢板同学给你简单的解释下样例:
最开始的时候树的样子是这样的:
0
/ \
1 2
然后对于标号为0的节点进行右旋,结果将变为:
1
\
0
\
2
然后呢。。。
中序遍历?这个是什么东西,哪个人可以告诉我下。。。。
1 3 0 1 2 1 -1 -1 2 -1 -1 1 0 1
1 0 2
#include "stdio.h" #include "string.h" #define N 10 int node[N][2],n; //表示树的节点,节点一维的下标表示当前节点的标号 ,a[][0]左子树,a[][1]右子树 /* node[节点标号][2] 表示树的节点,缺点是使用时难以控制程序运行中访问不该访问的内存区域 例如: node[-1][1] 不过这倒题幸好,没有怎么的操作这些树节点 */ //中序遍历 void orderTraverse(int index) { if(index>-1 && index<n){ orderTraverse(node[index][0]); printf("%d\n",index); orderTraverse(node[index][1]); }else return ; } int main() { int count,m; int mark,left,right; scanf("%d",&count); //表示测试的组数 while(count-->0){ scanf("%d",&n); //表示红黑树的节点个数 memset(node,-1,sizeof(node)); for(int i=0;i<n;i++){ scanf("%d%d%d",&mark,&left,&right); if(mark>-1 && mark<n){ node[mark][0]=left; node[mark][1]=right; } } scanf("%d",&m); /*对树进行操作*/ /*没有对树进行操作,因为操作和不操作对结果中序遍历没有影响*/ for(int operate=-1,i=0;i<m;i++){ scanf("%d%d",&mark,&operate); } orderTraverse(0); } return 0; }
原文:http://blog.csdn.net/user_longling/article/details/22491811