Valid Sudoku
Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules.
The Sudoku board could be partially filled, where empty cells are filled with the character ‘.‘
.
A partially filled sudoku which is valid.
判断数独当前状态是否合法
class Solution { public: bool isValidSudoku(vector<vector<char>>& board) { int col[10][10],row[10][10],box[10][10]; int i,j,x,a; memset(col,0,sizeof(col)); memset(row,0,sizeof(row)); memset(box,0,sizeof(box)); for (i=0;i<9;i++) for (j=0;j<9;j++) if (board[i][j]!='.') { x=board[i][j]-'0'; a=i/3*3+j/3; if (row[i][x]==1 || col[j][x]==1 || box[a][x]==1) return false; else row[i][x]=col[j][x]=box[a][x]=1; } return true; } };
Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character ‘.‘
.
You may assume that there will be only one unique solution.
A sudoku puzzle...
...and its solution numbers marked in red.
DFS解数独,保证唯一解class Solution { int col[10][10],row[10][10],box[10][10]; public: void solveSudoku(vector<vector<char> >& board) { memset(col,0,sizeof(col)); memset(row,0,sizeof(row)); memset(box,0,sizeof(box)); for (int i=0;i<9;i++) for (int j=0;j<9;j++) if (board[i][j]!='.') { col[j][board[i][j]-'0']=1; row[i][board[i][j]-'0']=1; box[i/3*3+j/3][board[i][j]-'0']=1; } dfs(board,0); } bool dfs(vector<vector<char> > & board,int key) { int i,j; if (key==81) return true; int x=key/9; int y=key%9; if (board[x][y]!='.') return dfs(board,key+1); else { int a=x/3*3+y/3; for (int i=1;i<=9;i++) if (col[y][i]==0 && row[x][i]==0 && box[a][i]==0) { col[y][i]=row[x][i]=box[a][i]=1; board[x][y]=i+'0'; if (dfs(board,key+1)) return true; col[y][i]=row[x][i]=box[a][i]=0; board[x][y]='.'; } } return false; } };
The count-and-say sequence is the sequence of integers beginning as follows:
1, 11, 21, 1211, 111221, ...
1
is read off as "one
1"
or 11
.
11
is read off as "two
1s"
or 21
.
21
is read off as "one
2
, then one 1"
or 1211
.
Given an integer n, generate the nth sequence.
Note: The sequence of integers will be represented as a string.
模拟过程class Solution { public: string countAndSay(int n) { vector<int>mark[n+1]; int temp; char ch; mark[1].push_back(1); string ans; int i,sum,j; for (i=2;i<=n;i++) { temp=mark[i-1][0]; sum=1; for (j=1;j<mark[i-1].size();j++) if (mark[i-1][j]!=temp) { mark[i].push_back(sum); mark[i].push_back(temp); temp=mark[i-1][j]; sum=1; } else sum++; mark[i].push_back(sum); mark[i].push_back(temp); } ans=""; for (i=0;i<mark[n].size();i++) { ch=mark[n][i]+'0'; ans=ans+ch; } return ans; } };
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
class Solution { vector<vector<int> >ans; vector<int>num; int key; int len; private: void dfs(vector<int>mark,int n,int sum,int used) { if (sum==key) { ans.push_back(mark); return ; } if (n==len) return ; if (sum+num[n]>key) return ; dfs(mark,n+1,sum,0); if (num[n]==num[n-1] && used==0) return ; mark.push_back(num[n]); dfs(mark,n+1,sum+num[n],1); mark.pop_back(); } public: vector<vector<int>> combinationSum2(vector<int>& candidates, int target) { len=candidates.size(); num=candidates; sort(num.begin(),num.end()); key=target; vector<int>mark; dfs(mark,0,0,1); return ans; } };
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/u011932355/article/details/47790213