文章对应视频的第12课,第5、6、7、8节。
在这之前还有查询方式的驱动编写,中断方式的驱动编写,这篇文章中暂时没有这些类容。但这篇文章是以这些为基础写的,前面的内容有空补上。
按键驱动——按下按键,打印键值:
目录
概要:
查询方式: 12-3
缺点:占用CPU99%的资源。
中断方式:12-4
缺点:调用read函数后如果没有按键按下,该函数永远不会结束,一直在等待按键按下。
优点:使用到了休眠机制,占用cpu资源极少。
poll机制: 12-5
优点:可以设置超时时间,来结束read函数。
缺点:需要主动去调用read函数来获取按键值。
同步互斥阻塞:12-7
优点:引入了原子操作、信号量,使得按键驱动同一时间只能有一个应用使用
异步通知:12-6
优点:当有按键按下时,可以主动通知应用程序,这样就不不需要应用程序主动调用read函数来获取按键值。
定时器防抖: 12-8
引入了系统中断xxx,每隔10ms xxx变量将自动加1。
poll机制:
目标:测试程序调用poll,如果5秒内有按键按下,则返回键值,如果没有按键按下则退出程序。
/********/
poll机制:
步骤:
/********/
一、将third全部替换成tourth。
二、添加poll机制需要的头文件:
#include <linux/poll.h>
三、在file_operations结构中增加poll函数:
.poll = forth_drv_poll,
四、编写poll函数:
static unsigned forth_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
完整测试程序请看下面:polldrv
/**************************************************************/ /**** polldrv ***************************************/ /**************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *forthdrv_class; static struct class_device *forthdrv_class_dev; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,forth_drv_read将它清0 */ static volatile int ev_press = 0; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; struct pin_desc pins_desc[4] = { {S3C2410_GPF0, 0x01}, {S3C2410_GPF2, 0x02}, {S3C2410_GPG3, 0x03}, {S3C2410_GPG11, 0x04}, }; /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ return IRQ_RETVAL(IRQ_HANDLED); } static int forth_drv_open(struct inode *inode, struct file *file) { /* 配置GPF0,2为输入引脚 */ /* 配置GPG3,11为输入引脚 */ request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]); request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]); request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]); return 0; } ssize_t forth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int forth_drv_close(struct inode *inode, struct file *file) { free_irq(IRQ_EINT0, &pins_desc[0]); free_irq(IRQ_EINT2, &pins_desc[1]); free_irq(IRQ_EINT11, &pins_desc[2]); free_irq(IRQ_EINT19, &pins_desc[3]); return 0; } static unsigned forth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = forth_drv_open, .read = forth_drv_read, .release = forth_drv_close, .poll = forth_drv_poll, }; int major; static int forth_drv_init(void) { major = register_chrdev(0, "forth_drv", &sencod_drv_fops); forthdrv_class = class_create(THIS_MODULE, "forth_drv"); forthdrv_class_dev = class_device_create(forthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ return 0; } static void forth_drv_exit(void) { unregister_chrdev(major, "forth_drv"); class_device_unregister(forthdrv_class_dev); class_destroy(forthdrv_class); return 0; } module_init(forth_drv_init); module_exit(forth_drv_exit); MODULE_LICENSE("GPL");
测试程序:
1.在thirtest中修改,增加头文件 #include <poll.h>
2.在虚拟机中输入 man poll ,查看poll 的用法。
3.使用此函数调用驱动程序中的poll函数:int poll(struct pollfd *fds, nfds_t nfds, int timeout);
返回值: 0表示有超时。
参数一:pollfd结构,用来保存需要查询的文件、参数。不太懂。
struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
};
参数二:查询的文件数,fds为一个结构数组,存放需要查询的文件,本程序中为1,
参数三:超时时间,单位毫秒 5000ms=5s
4.定义上述函数的返回值、第一个参数struct pollfd *fds,并设置pollfd结构:
int ret; //存放返回值
struct pollfd fds[1];
fds[0].fd = fd;
fds[0].events = POLLIN; //该事件的含义是:There is data to read.(有要读取的数据)
5.调用poll:
ret = poll(fds, 1, 5000);
6.判断是否有超时,并打印相关数据:
if (ret == 0)
{
printf("time out\n");
}
else
{
read(fd, &key_val, 1);
printf("key_val = 0x%x\n", key_val);
}
完整测试程序请看下面:polltest
/**************************************************************/ /**** polltest ***************************************/ /**************************************************************/ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <poll.h> /* forthdrvtest */ int main(int argc, char **argv) { int fd; unsigned char key_val; int ret; struct pollfd fds[1]; fd = open("/dev/buttons", O_RDWR); if (fd < 0) { printf("can‘t open!\n"); } fds[0].fd = fd; fds[0].events = POLLIN; while (1) { ret = poll(fds, 1, 5000); if (ret == 0) { printf("time out\n"); } else { read(fd, &key_val, 1); printf("key_val = 0x%x\n", key_val); } } return 0; }
异步通知:
目标:当按键按下时,驱动程序通知应用程序,
1、应用程序注册信号处理函数。
2、谁发、发给谁:驱动发信号给应用程序。
3、应用告诉驱动应用的PID是多少。
4、怎么发;kill_fasyn
/**************************/
异步通知 信号(signal):
步骤:
/**************************/
发信号简介:
kill -9 PID(进程号)可以杀死某个进程
发送方 内容 接收方
写一个进程通信的例子:
用 man signal 查看signal怎么使用
#include <signal.h>
void my_signal_fun(int signum)
{
static int cnt = 0 ;
printf("signal = %d , %d time\n" , signum , ++cnt);
}
int main(int argc , char **argv)
{
signal(SIGUSR1, my_signal_fun);
while (1)
{
sleep(1000);
}
return 0;
}
编译:arm-linux-gcc -o signal signal.c
./signal //运行
PS //查看进程号
kill -USR1 xxx
kill -10 xxx
异步通知的要点:
1.注册信号处理函数
2.谁发
3.发给谁
4.怎么发
转化成代码:
1、应用程序注册信号处理函数。
2、谁发、发给谁:驱动发信号给应用程序。
3、应用程序告诉驱动应用程序的PID是多少。
4、怎么发:kill_fasync
驱动编写:
1、在forth_drv的基础上编写,将forth替换成fifth。
2、在file_operations结构中增加一个函数:
.fasync = fifth_drv_fasync,
3、定义fasync_struct结构体
static struct fasync_struct *button_async;
4、实现该函数,当应用程序调用fcntl(fd,F_SETFL, oflags | FASYNC );时,内核就得到应用程序的PID。
当标志位发生改变时此函数将被调用,初始化fasync_struct结构体,该结构体中有PID信息。(好像是这样的,不明白)
static int fifth_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: fifth_drv_fasync\n");
return fasync_helper (fd, filp, on, &button_async);
}
5、在中断处理函数中发送信号给应用程序:
kill_fasync (&button_async, SIGIO, POLL_IN);
完整代码请看下面:fifth_drv.c
/**************************************************************/ /**** fifth_drv.c: ***************************************/ /**************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *fifthdrv_class; static struct class_device *fifthdrv_class_dev; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,fifth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; struct pin_desc pins_desc[4] = { {S3C2410_GPF0, 0x01}, {S3C2410_GPF2, 0x02}, {S3C2410_GPG3, 0x03}, {S3C2410_GPG11, 0x04}, }; /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); return IRQ_RETVAL(IRQ_HANDLED); } static int fifth_drv_open(struct inode *inode, struct file *file) { /* 配置GPF0,2为输入引脚 */ /* 配置GPG3,11为输入引脚 */ request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]); request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]); request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]); return 0; } ssize_t fifth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int fifth_drv_close(struct inode *inode, struct file *file) { free_irq(IRQ_EINT0, &pins_desc[0]); free_irq(IRQ_EINT2, &pins_desc[1]); free_irq(IRQ_EINT11, &pins_desc[2]); free_irq(IRQ_EINT19, &pins_desc[3]); return 0; } static unsigned fifth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int fifth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: fifth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = fifth_drv_open, .read = fifth_drv_read, .release = fifth_drv_close, .poll = fifth_drv_poll, .fasync = fifth_drv_fasync, }; int major; static int fifth_drv_init(void) { major = register_chrdev(0, "fifth_drv", &sencod_drv_fops); fifthdrv_class = class_create(THIS_MODULE, "fifth_drv"); fifthdrv_class_dev = class_device_create(fifthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ return 0; } static void fifth_drv_exit(void) { unregister_chrdev(major, "fifth_drv"); class_device_unregister(fifthdrv_class_dev); class_destroy(fifthdrv_class); return 0; } module_init(fifth_drv_init); module_exit(fifth_drv_exit); MODULE_LICENSE("GPL");
测试程序请看下面:fifth_test.c
/**************************************************************/ /**** fifth_test.c: ***************************************/ /**************************************************************/ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <poll.h> #include <signal.h> #include <sys/types.h> #include <unistd.h> #include <fcntl.h> /* fifthdrvtest */ int fd; void my_signal_fun(int signum) { unsigned char key_val; read(fd, &key_val, 1); printf("key_val: 0x%x\n", key_val); } int main(int argc, char **argv) { unsigned char key_val; int ret; int Oflags; signal(SIGIO, my_signal_fun); fd = open("/dev/buttons", O_RDWR); if (fd < 0) { printf("can‘t open!\n"); } fcntl(fd, F_SETOWN, getpid()); Oflags = fcntl(fd, F_GETFL); fcntl(fd, F_SETFL, Oflags | FASYNC); while (1) { sleep(1000); } return 0; } //关于 fcntl 可以参考: http://www.cnblogs.com/lonelycatcher/archive/2011/12/22/2297349.html //我没看明白
原子操作、信号量
/********************/
同步互斥阻塞:12-7:
原子操作、信号量
步骤:
/********************/
原子相关:
原子操作的相关函数:
atomic_t v=ATOMIC_INIT(1); //定义原子变量v并初始化为1
atomic_read(atomic_t *v); //返回原子变量的值/
void atomic_inc(&v); //自增1
void atomic_dec(&v); //自减1
atomic_dec_and_test(&v); //自减操作后测试其指是否为0,为0返回true,否则返回false
1、添加一个一个原子变量:atomic_t canopen=ATOMIC_INIT(1);
2、在open函数中增加一段判断代码:
if (!atomic_dec_and_test(&canopen))
{
atomic_inc(&canopen);
return -EBUSY; //当已经有应用程序打开该文件了,就返回忙
}
3、在close 中把变量加回来:
void atomic_inc(&canopen);
信号量相关:
信号量(semaphore):
用于保护临界区的一种常用方法,只有得到信号得信号量的进程才能执行临界区代码。
当获取不到信号量是,进程进入休眠等待状态。
信号量的相关函数:
定义信号量:struct semaphore sem;
初始化信号量:
void sema_init(struct semaphore * sem, int val);
void init_MUTEX(struct semaphore * sem);
static DECLARE_MUTEX(button_lock); //定义互斥锁
获得信号量:
void down(struct semaphore * sem)
void down_interruptible(struct semaphore * sem)
void down_trylock(struct semaphore * sem)
释放信号量:
void up(struct semaphore *sem)
步骤和原子操作一样,都是定义一个信号量、在open中申请信号量、在close中释放
使用信号量与使用原子操作的区别在于,
当使用原子操作时,第二次申请失败后程序将退出,
而使用信号量的时候第二次申请失败时,进程将被挂起,等待其他程序释放该信号量,
当有其他程序释放该信号量时,此程序将被唤醒。
阻塞与非阻塞:
当应用程序选择阻塞方式访问驱动时,应用申请不到信号量将等待其他程序释放信号量
当应用程序选择非阻塞方式访问驱动时,应用申请不到信号量或没有按键触发时将直接退出,不会去等待信号量与按键触发
1、在open函数中增加判断,判断传入的参数是阻塞还是非阻塞:
if (file->f_flags & O_NONBLOCK)
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else
{
/* 获取信号量 */
down(&button_lock);
}
2、在read函数中也增加判断:
if (file->f_flags & O_NONBLOCK)
{
if (!ev_press)
return -EAGAIN;
}
else
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}
完整代码请看下面:sixth_drv.c
/**************************************************************/ /**** sixth_drv.c: ***********************************/ /**************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; struct pin_desc pins_desc[4] = { {S3C2410_GPF0, 0x01}, {S3C2410_GPF2, 0x02}, {S3C2410_GPG3, 0x03}, {S3C2410_GPG11, 0x04}, }; //static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1 static DECLARE_MUTEX(button_lock); //定义互斥锁 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { struct pin_desc * pindesc = (struct pin_desc *)dev_id; unsigned int pinval; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode, struct file *file) { #if 0 if (!atomic_dec_and_test(&canopen)) { atomic_inc(&canopen); return -EBUSY; } #endif if (file->f_flags & O_NONBLOCK) { if (down_trylock(&button_lock)) return -EBUSY; } else { /* 获取信号量 */ down(&button_lock); } /* 配置GPF0,2为输入引脚 */ /* 配置GPG3,11为输入引脚 */ request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]); request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]); request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; if (file->f_flags & O_NONBLOCK) { if (!ev_press) return -EAGAIN; } else { /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); } /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int sixth_drv_close(struct inode *inode, struct file *file) { //atomic_inc(&canopen); free_irq(IRQ_EINT0, &pins_desc[0]); free_irq(IRQ_EINT2, &pins_desc[1]); free_irq(IRQ_EINT11, &pins_desc[2]); free_irq(IRQ_EINT19, &pins_desc[3]); up(&button_lock); return 0; } static unsigned sixth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: sixth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static int sixth_drv_init(void) { major = register_chrdev(0, "sixth_drv", &sencod_drv_fops); sixthdrv_class = class_create(THIS_MODULE, "sixth_drv"); sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ return 0; } static void sixth_drv_exit(void) { unregister_chrdev(major, "sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");
测试程序:
测试程序中打开驱动文件是可以传入一个阻塞非阻塞的参数,驱动程序中将会对其判断
非阻塞: fd = open("/dev/buttons", O_RDWR );
阻塞: fd = open("/dev/buttons", O_RDWR | O_NONBLOCK);
完整代码请看下面:sixth_test.c
/**************************************************************/ /**** sixth_test.c: ***************************************/ /**************************************************************/ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <poll.h> #include <signal.h> #include <sys/types.h> #include <unistd.h> #include <fcntl.h> /* sixthdrvtest */ int fd; void my_signal_fun(int signum) { unsigned char key_val; read(fd, &key_val, 1); printf("key_val: 0x%x\n", key_val); } int main(int argc, char **argv) { unsigned char key_val; int ret; int Oflags; //signal(SIGIO, my_signal_fun); fd = open("/dev/buttons", O_RDWR | O_NONBLOCK); if (fd < 0) { printf("can‘t open!\n"); return -1; } //fcntl(fd, F_SETOWN, getpid()); //Oflags = fcntl(fd, F_GETFL); //fcntl(fd, F_SETFL, Oflags | FASYNC); while (1) { ret = read(fd, &key_val, 1); printf("key_val: 0x%x, ret = %d\n", key_val, ret); sleep(5); } return 0; }
定时器防抖
/********************/
定时器防抖 12-8
/********************/
定时器两要素:
1、超时时间。2、超时处理函数
步骤:
1、定义一个timer:static struct timer_list buttons_timer;
2、在init函数中初始化timer,设置timer:
init_timer(&buttons_timer); //初始化
buttons_timer.function = buttons_timer_function; //超时处理函数
//buttons_timer.expires = 0;
add_timer(&buttons_timer); //将定时器告诉内核
3、在中断处理函数中增加:
/* 10ms后启动定时器 */
irq_pd = (struct pin_desc *)dev_id;
mod_timer(&buttons_timer, jiffies+HZ/100); //设置超时时间,如果抖动了,该函数将被重新调用,即重新设置超时时间
//jiffies为系统时钟中断,每隔10ms将自增1。可以 cat /proc/interrupts查看到一个Timer Tick
4、并将原来的irq函数里的内容放到超时处理函数中。
5、因为init函数中,设置timer是没有设置超时时间,即默认超时时间为0,即设置好后将立即调用超时函数,所以需要在超时函数中增加一个判断:
if (!pindesc)
return;
//pindesc在irq中设置了,当没有发生中断,而进入该函数,就直接返回。
完整代码请看下面:buttuns_alldrv.c
/**************************************************************/ /**** buttuns_alldrv.c: ***************************************/ /**************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; static struct timer_list buttons_timer; static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; struct pin_desc{ unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; struct pin_desc pins_desc[4] = { {S3C2410_GPF0, 0x01}, {S3C2410_GPF2, 0x02}, {S3C2410_GPG3, 0x03}, {S3C2410_GPG11, 0x04}, }; static struct pin_desc *irq_pd; //static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1 static DECLARE_MUTEX(button_lock); //定义互斥锁 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) { /* 10ms后启动定时器 */ irq_pd = (struct pin_desc *)dev_id; mod_timer(&buttons_timer, jiffies+HZ/100); return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode, struct file *file) { #if 0 if (!atomic_dec_and_test(&canopen)) { atomic_inc(&canopen); return -EBUSY; } #endif if (file->f_flags & O_NONBLOCK) { if (down_trylock(&button_lock)) return -EBUSY; } else { /* 获取信号量 */ down(&button_lock); } /* 配置GPF0,2为输入引脚 */ /* 配置GPG3,11为输入引脚 */ request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]); request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]); request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]); request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; if (file->f_flags & O_NONBLOCK) { if (!ev_press) return -EAGAIN; } else { /* 如果没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); } /* 如果有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int sixth_drv_close(struct inode *inode, struct file *file) { //atomic_inc(&canopen); free_irq(IRQ_EINT0, &pins_desc[0]); free_irq(IRQ_EINT2, &pins_desc[1]); free_irq(IRQ_EINT11, &pins_desc[2]); free_irq(IRQ_EINT19, &pins_desc[3]); up(&button_lock); return 0; } static unsigned sixth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会立即休眠 if (ev_press) mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) { printk("driver: sixth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static void buttons_timer_function(unsigned long data) { struct pin_desc * pindesc = irq_pd; unsigned int pinval; if (!pindesc) return; pinval = s3c2410_gpio_getpin(pindesc->pin); if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); } static int sixth_drv_init(void) { init_timer(&buttons_timer); buttons_timer.function = buttons_timer_function; //buttons_timer.expires = 0; add_timer(&buttons_timer); major = register_chrdev(0, "sixth_drv", &sencod_drv_fops); sixthdrv_class = class_create(THIS_MODULE, "sixth_drv"); sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ return 0; } static void sixth_drv_exit(void) { unregister_chrdev(major, "sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");
代码都是韦老师的,自己有好几处都不是很明白。我是纯新手,里面肯定有好多地方理解错了,暂时先这样写。如果看到我写错了,希望各位千万要指出来,感谢!
入门级的按键驱动——按键驱动笔记之poll机制-异步通知-同步互斥阻塞-定时器防抖
原文:http://www.cnblogs.com/wwwying9/p/4746272.html