Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [?2,1,?3,4,?1,2,1,?5,4],
the contiguous subarray [4,?1,2,1] has the largest sum = 6.
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int maxSoFar = nums[0];
int maxEndingHere = nums[0];
for (int i = 1; i < nums.length; i++) {
maxEndingHere = Math.max(nums[i], maxEndingHere+nums[i]);
maxSoFar = Math.max(maxSoFar, maxEndingHere);
}
return maxSoFar;
}sum[i] = max(nums[i], sum[i-1] + nums[i+1])
result = max(result, sum[i])
显然nums[i]与nums[i]+sum[i-1]孰大孰小,完全取决于sum[i-1]的正负,所以代码也可以这样写:
public int maxSubArray(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int max = A[0];
int curSum = A[0];
for (int i = 1; i < A.length; i++) {
if (curSum < 0) {
curSum = A[i];
} else {
curSum += A[i];
}
if (max < curSum) {
max = curSum;
}
}
return max;
} 这个算法还是比较经典的,好多算法也用到了这个特性,比如,maxEndingHere或者maxBeginingHere。
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/my_jobs/article/details/47978137