附改进版代码,未改进版只要稍作改动即是。
function [ mhd ] = ModHausdorffDist( A, B )
% A -> Point set 1
% B -> Point set 2
% No. of samples of each point set may be different but the dimension of
% the points must be the same.
% Compute the sizes of the input point sets
Asize = size(A);
Bsize = size(B);
% Check if the points have the same dimensions
if Asize(2) ~= Bsize(2)
error('The dimensions of points in the two sets are not equal');
end
% Calculating the forward HD
fhd = 0; % Initialize forward distance to 0
for a = 1:Asize(1) % Travel the set A to find avg of d(A,B)
mindist = Inf; % Initialize minimum distance to Inf
for b = 1:Bsize(1) % Travel set B to find the min(d(a,B))
tempdist = norm(A(a,:)-B(b,:));
if tempdist < mindist
mindist = tempdist;
end
end
fhd = fhd + mindist; % Sum the forward distances
end
fhd = fhd/Asize(1); % Divide by the total no to get average
% Calculating the reverse HD
rhd = 0; % Initialize reverse distance to 0
for b = 1:Bsize(1) % Travel the set B to find avg of d(B,A)
mindist = Inf; % Initialize minimum distance to Inf
for a = 1:Asize(1) % Travel set A to find the min(d(b,A))
tempdist = norm(A(a,:)-B(b,:));
if tempdist < mindist
mindist = tempdist;
end
end
rhd = rhd + mindist; % Sum the reverse distances
end
rhd = rhd/Bsize(1); % Divide by the total no. to get average
mhd = max(fhd,rhd); % Find the minimum of fhd/rhd as
% the mod hausdorff dist
end
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文:http://blog.csdn.net/xingyanxiao/article/details/48048613