求双连通分量,利用并查集缩点,形成一棵树,树边肯定都是桥,然后每对点x,y,找原图中x,y点对应的新图中的点,如果不是一个点,则向上找它们的LCA,因为它们之间连了一条边,所以这些点到它们的LCA之间的边都不是割边了,找LCA时,先将两点上升到同一层次,然后一起再向上找父亲节点,其间遇到桥就把桥的标记删除,并且答案减1。
这个题比上一个好玩多了。
#include <iostream>
using namespace std;
const int MAXN = 100005;
struct node {
int to, next;
} edge[MAXN * 4];
int head[MAXN], dfn[MAXN], low[MAXN], pre[MAXN], vis[MAXN];
int n, m, timee, cnt, cut;
bool bi[MAXN];
void init() {
memset(vis, 0, sizeof(vis));
memset(head, -1, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
for (int i = 0; i <= n; pre[i] = i, i++) ;
memset(bi, 0, sizeof(bi));
cnt = 0;
cut = 0;
timee = 1;
}
void addedge(int u, int v) {
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt;
cnt++;
}
void dfs(int u, int fa) {
dfn[u] = timee;
low[u] = timee;
timee++;
vis[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (!vis[v]) {
dfs(v, u);
pre[v] = u; //记录父节点
low[u] = min(low[u], low[v]);
if (low[v] > dfn[u]) { //如果子节点的low值大于父节点的时间戳这就是桥
cut++;
bi[v] = true;
}
}
else if (vis[v] == 1 && v != fa) {
low[u] = min(low[u], dfn[v]);
}
}
vis[u] = 2;
}
int judge(int u, int v) {
int cnt1 = 0;
while (dfn[u] > dfn[v]) {
if (bi[u]) {
cnt1++;
bi[u] = false;
}
u = pre[u];
}
while (dfn[u] < dfn[v]) {
if (bi[v]) {
cnt1++;
bi[v] = false;
}
v = pre[v];
}
while (u != v) {
if (bi[u]) {
bi[u] = false;
cnt1++;
}
if (bi[v]) {
bi[v] = false;
cnt1++;
}
u = pre[u];
v = pre[v];
}
return cnt1;
}
int main() {
int u, v, q, in = 0;
while (scanf("%d%d", &n, &m), n + m) {
if (in) {
puts("");
}
in++;
init();
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
u--;
v--;
addedge(u, v);
addedge(v, u);
}
dfs(0, 0);
scanf("%d", &q);
printf("Case %d:\n", in);
for (int i = 0; i < q; i++) {
scanf("%d%d", &u, &v);
u--;
v--;
cut -= judge(u, v);
printf("%d\n", cut);
}
}
return 0;
}
原文:http://blog.csdn.net/zhengnanlee/article/details/22646327