首页 > 其他 > 详细

lucas 定理学习

时间:2015-09-10 01:52:00      阅读:262      评论:0      收藏:0      [点我收藏+]

技术分享

大致意思就是求组合数C(n , m) % p的值, p为一个偶数

可以将组合数的n 和 m都理解为 p 进制的表示

n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p + a0

m = bk*p^k + b(k-1)*p^(k-1) + ... + b1*p + b0

然后C(n,m)%p = C(ak , bk) * C(a(k-1) , b(k-1)) * ... * C(a1 , b1) * C(a0 , b0) % p

当然这其中出现 ai < bi的情况那直接视为乘以了 0

其他情况都是正常的组合数计算

因为p为素数,取模的过程求逆元就是利用欧拉定理来求解

a^(-1) = a^(p-2) (mod p) 

那么只要快速幂求a^(p-2) % p的值就行了 , 那么组合数C(ai , bi) 就可以算出来了

 

HDU 4349 求C(n , i)中 0<=i<=n 中多少个可以使C(n , i)为奇数

 这里先将n转化为二进制表示,因为C(n,m)%p = C(ak , bk) * C(a(k-1) , b(k-1)) * ... * C(a1 , b1) * C(a0 , b0) % p

那么只会出现ai = 0 , 1 bi = 0 , 1的情况

那么只有ai=0 , bi = 1 才是C(ai , bi) = 0为偶数,其他时候都是奇数,那只要枚举每一位保证那一位出现的数字可能不超过n对应的二进制位即可

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 int main() {
 5     int n;
 6     while(~scanf("%d" , &n)){
 7         int ret = 1;
 8         while(n){
 9             ret = ret*((n&1)+1);
10             n>>=1;
11         }
12         printf("%d\n",ret);
13     }    
14     return 0;
15 }

 

HDU 3037 一道比较裸的lucas定理的题目

求C(n+m , n)%p的值

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 
 5 int q_pow(int a , int b , int p)
 6 {
 7     ll ret = 1;
 8     while(b){
 9         if(b&1) ret = ret*a%p;
10         a = (ll)a*a%p;
11         b>>=1;
12     }
13     return ret;
14 }
15 
16 int C(int a , int b , int p)
17 {
18     if(b==0) return 1;
19     if(a<b) return 0;
20     if(a==b) return 1;
21     int s=1 , t=1;
22     for(int i=1 ; i<=b ; i++) s=(ll)s*(a-i+1)%p;
23     for(int i=1 ; i<=b ; i++) t=(ll)t*i%p;
24     //cout<<"C: "<<a<<" "<<b<<" "<<p<<" "<<s<<" "<<t<<endl;
25     return (ll)s*q_pow(t , p-2 , p)%p;
26 }
27 
28 int lucas(int a, int b,int p)
29 {
30     //cout<<"in: "<<a<<" "<<b<<" "<<p<<endl;
31     if(b==0) return 1;
32     if(a<b) return 0;
33     if(a==b) return 1;
34     //cout<<"en: "<<C(a%p , b%p , p)<<endl;
35     return (ll)C(a%p , b%p , p)*lucas(a/p , b/p , p)%p;
36 }
37 
38 int main() {
39     //freopen("in.txt" , "r" , stdin);
40     int n;
41     scanf("%d" , &n);
42     while(n--){
43         int a , b , p;
44         scanf("%d%d%d", &a , &b , &p);
45         printf("%d\n" , lucas(a+b,a,p));
46     }    
47     return 0;
48 }

 

lucas 定理学习

原文:http://www.cnblogs.com/CSU3901130321/p/4796483.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!