首页 > 其他 > 详细

【Leetcode】Search a 2D Matrix

时间:2015-09-11 09:09:56      阅读:270      评论:0      收藏:0      [点我收藏+]

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

思路:因为题目的条件是第x+1行的第一个数比第x行最后一个数大,所以能够使用二分查找;假设题目条件仅仅说逐行递增,逐列递增,能够从右上角開始查找。此方法也适用于本题。

代码一:

class Solution {
public:
    bool searchMatrix(vector<vector<int> > &matrix, int target) {
        const int m = matrix.size();
        if(m == 0)  return false;
        const int n = matrix[0].size();
        if(n == 0)  return false;
        
        int first = 0;
        int last = m * n - 1;
        
        while(first <= last)
        {
            int middle = (first + last) / 2;
            int val = matrix[middle / n][middle % n];
            
            if(val == target)
                return true;
            else if(val < target)
                first = middle + 1;
            else
                last = middle - 1;
        }
        
        return false;
    }
};

代码二:

class Solution {
public:
    bool searchMatrix(vector<vector<int> > &matrix, int target) {
        const int m = matrix.size();
        if(m == 0)  return false;
        const int n = matrix[0].size();
        if(n == 0)  return false;
        
        int row = 0;
        int column = n - 1;
        
        while(row < m && column >= 0)
        {
            if(matrix[row][column] == target)
                return true;
            else if(matrix[row][column] > target)
                column--;
            else
                row++;
        }
        
        return false;
    }
};


版权声明:本文博主原创文章。博客,未经同意不得转载。

【Leetcode】Search a 2D Matrix

原文:http://www.cnblogs.com/bhlsheji/p/4799905.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!