首页 > 其他 > 详细

损失函数(loss function) 转

时间:2015-09-12 14:51:57      阅读:248      评论:0      收藏:0      [点我收藏+]

原文:http://luowei828.blog.163.com/blog/static/310312042013101401524824

通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料:

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying view”)。
 
一、损失项
  • 对回归问题,常用的有:平方损失(for linear regression),绝对值损失;
  • 对分类问题,常用的有:hinge loss(for soft margin SVM),log loss(for logistic regression)。
 
说明:
  • 对hinge loss,又可以细分出hinge loss(或简称L1 loss)和squared hinge loss(或简称L2 loss)。国立台湾大学的Chih-Jen Lin老师发布的Liblinear就实现了这2种hinge loss。L1 loss和L2 loss与下面的regularization是不同的,注意区分开。
二、正则项
  • 常用的有L1-regularization和L2-regularization。上面列的那个资料对此还有详细的总结。

 

补充

损失函数(loss function) 转

原文:http://www.cnblogs.com/zhizhan/p/4802935.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!