原文链接 http://www.cnblogs.com/shenh062326/p/3658543.html
运行Spark最简单的方法是通过Local模式(即伪分布式模式)。
运行命令为:./bin/run-example org.apache.spark.examples.SparkPi local
Standalone模式下,集群启动时包括Master与Worker,其中Master负责接收客户端提交的作业,管理Worker。提供了Web展示集群与作业信息。
名词解释:
1. Standalone模式下存在的角色。
Client:客户端进程,负责提交作业到Master。
Master:Standalone模式中主控节点,负责接收Client提交的作业,管理Worker,并命令Worker启动Driver和Executor。
Worker:Standalone模式中slave节点上的守护进程,负责管理本节点的资源,定期向Master汇报心跳,接收Master的命令,启动Driver和Executor。
Driver: 一个Spark作业运行时包括一个Driver进程,也是作业的主进程,负责作业的解析、生成Stage并调度Task到Executor上。包括DAGScheduler,TaskScheduler。
Executor:即真正执行作业的地方,一个集群一般包含多个Executor,每个Executor接收Driver的命令Launch Task,一个Executor可以执行一到多个Task。
2.作业相关的名词解释
Stage:一个Spark作业一般包含一到多个Stage。
Task:一个Stage包含一到多个Task,通过多个Task实现并行运行的功能。
DAGScheduler: 实现将Spark作业分解成一到多个Stage,每个Stage根据RDD的Partition个数决定Task的个数,然后生成相应的Task set放到TaskScheduler中。
TaskScheduler:实现Task分配到Executor上执行。
提交作业有两种方式,分别是Driver(作业的master,负责作业的解析、生成stage并调度task到,包含DAGScheduler)运行在Worker上,Driver运行在客户端。接下来分别介绍两种方式的作业运行原理。
通过org.apache.spark.deploy.Client类执行作业,作业运行命令如下:
./bin/spark-class org.apache.spark.deploy.Client launch spark://host:port file:///jar_url org.apache.spark.examples.SparkPi spark://host:port
作业执行流如图1所示。
图1
作业执行流程描述:
直接执行Spark作业,作业运行命令如下(示例):
./bin/run-example org.apache.spark.examples.SparkPi spark://host:port
作业执行流如图2所示。
图2
作业执行流程描述:
这里Spark AppMaster相当于Standalone模式下的SchedulerBackend,Executor相当于standalone的ExecutorBackend,spark AppMaster中包括DAGScheduler和YarnClusterScheduler。
Spark on Yarn的执行流程可以参考http://www.csdn.net/article/2013-12-04/2817706--YARN spark on Yarn部分。
这里主要介绍一下Spark ApplicationMaster的主要工作。代码参考Apache Spark 0.9.0版本ApplicationMaster.scala中的run()方法。
步骤如下:
原文:http://www.cnblogs.com/ihongyan/p/4805974.html