排序算法 | 平均复杂度 |
冒泡排序 | O(n2) |
选择排序 | O(n2) |
插入排序 | O(n2) |
希尔排序 | O(n1.5) |
快速排序 | O(N*logN) |
归并排序 | O(N*logN) |
堆排序 | O(N*logN) |
基数排序 | O(d(n+r)) |
基本思想:两个数比较大小,较大的数下沉,较小的数冒起来。
过程:
比较相邻的两个数据,如果第二个数小,就交换位置。
从后向前两两比较,一直到比较最前两个数据。最终最小数被交换到起始的位置,这样第一个最小数的位置就排好了。
继续重复上述过程,依次将第2.3...n-1个最小数排好位置。
冒泡排序
平均时间复杂度:O(n2)
java代码实现:
public static void BubbleSort(int [] arr){ int temp;//临时变量 for(int i=0; i<arr.length-1; i++){ //表示趟数,一共arr.length-1次。 for(int j=arr.length-1; j>i; j--){ if(arr[j] < arr[j-1]){ temp = arr[j]; arr[j] = arr[j-1]; arr[j-1] = temp; } } } }
优化:
针对问题:
数据的顺序排好之后,冒泡算法仍然会继续进行下一轮的比较,直到arr.length-1次,后面的比较没有意义的。
方案:
设置标志位flag,如果发生了交换flag设置为true;如果没有交换就设置为false。
这样当一轮比较结束后如果flag仍为false,即:这一轮没有发生交换,说明数据的顺序已经排好,没有必要继续进行下去。
public static void BubbleSort1(int [] arr){ int temp;//临时变量 boolean flag;//是否交换的标志 for(int i=0; i<arr.length-1; i++){ //表示趟数,一共arr.length-1次。 flag = false; for(int j=arr.length-1; j>i; j--){ if(arr[j] < arr[j-1]){ temp = arr[j]; arr[j] = arr[j-1]; arr[j-1] = temp; flag = true; } } if(!flag) break; }}
基本思想:
在长度为N的无序数组中,第一次遍历n-1个数,找到最小的数值与第一个元素交换;
第二次遍历n-2个数,找到最小的数值与第二个元素交换;
。。。
第n-1次遍历,找到最小的数值与第n-1个元素交换,排序完成。
过程:
选择排序
平均时间复杂度:O(n2)
java代码实现:
public static void select_sort(int array[],int lenth){ for(int i=0;i<lenth-1;i++){ int minIndex = i; for(int j=i+1;j<lenth;j++){ if(array[j]<array[minIndex]){ minIndex = j; } } if(minIndex != i){ int temp = array[i]; array[i] = array[minIndex]; array[minIndex] = temp; } }}
基本思想:
在要排序的一组数中,假定前n-1个数已经排好序,现在将第n个数插到前面的有序数列中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
过程:
插入排序
相同的场景
平均时间复杂度:O(n2)
java代码实现:
public static void insert_sort(int array[],int lenth){ int temp; for(int i=0;i<lenth-1;i++){ for(int j=i+1;j>0;j--){ if(array[j] < array[j-1]){ temp = array[j-1]; array[j-1] = array[j]; array[j] = temp; }else{ //不需要交换 break; } } }}
前言:
数据序列1: 13-17-20-42-28 利用插入排序,13-17-20-28-42. Number of swap:1;
数据序列2: 13-17-20-42-14 利用插入排序,13-14-17-20-42. Number of swap:3;
如果数据序列基本有序,使用插入排序会更加高效。
基本思想:
在要排序的一组数中,根据某一增量分为若干子序列,并对子序列分别进行插入排序。
然后逐渐将增量减小,并重复上述过程。直至增量为1,此时数据序列基本有序,最后进行插入排序。
过程:
希尔排序
平均时间复杂度:
java代码实现:
public static void shell_sort(int array[],int lenth){ int temp = 0; int incre = lenth; while(true){ incre = incre/2; for(int k = 0;k<incre;k++){ //根据增量分为若干子序列 for(int i=k+incre;i<lenth;i+=incre){ for(int j=i;j>k;j-=incre){ if(array[j]<array[j-incre]){ temp = array[j-incre]; array[j-incre] = array[j]; array[j] = temp; }else{ break; } } } } if(incre == 1){ break; } }}
基本思想:(分治)
先从数列中取出一个数作为key值;
将比这个数小的数全部放在它的左边,大于或等于它的数全部放在它的右边;
对左右两个小数列重复第二步,直至各区间只有1个数。
辅助理解:挖坑填数
初始时 i = 0; j = 9; key=72
由于已经将a[0]中的数保存到key中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比key小的数。当j=8,符合条件,a[0] = a[8] ; i++ ; 将a[8]挖出再填到上一个坑a[0]中。
这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。
这次从i开始向后找一个大于key的数,当i=3,符合条件,a[8] = a[3] ; j-- ; 将a[3]挖出再填到上一个坑中。
数组:72 - 6 - 57 - 88 - 60 - 42 - 83 - 73 - 48 - 85 0 1 2 3 4 5 6 7 8 9
此时 i = 3; j = 7; key=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将key填入a[5]。
数组:48 - 6 - 57 - 88 - 60 - 42 - 83 - 73 - 88 - 85 0 1 2 3 4 5 6 7 8 9
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
<数组:48 - 6 - 57 - 42 - 60 - 72 - 83 - 73 - 88 - 85 0 1 2 3 4 5 6 7 8 9
平均时间复杂度:O(N*logN)
代码实现:
public static void quickSort(int a[],int l,int r){ if(l>=r) return; int i = l; int j = r; int key = a[l];//选择第一个数为key while(i<j){ while(i<j && a[j]>=key)//从右向左找第一个小于key的值 j--; if(i<j){ a[i] = a[j]; i++; } while(i<j && a[i]<key)//从左向右找第一个大于key的值 i++; if(i<j){ a[j] = a[i]; j--; } } //i == j a[i] = key; quickSort(a, l, i-1);//递归调用 quickSort(a, i+1, r);//递归调用 }
key值的选取可以有多种形式,例如中间数或者随机数,分别会对算法的复杂度产生不同的影响。
基本思想:参考
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
首先考虑下如何将2个有序数列合并。这个非常简单,只要从比较2个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
//将有序数组a[]和b[]合并到c[]中void MemeryArray(int a[], int n, int b[], int m, int c[]){ int i, j, k; i = j = k = 0; while (i < n && j < m) { if (a[i] < b[j]) c[k++] = a[i++]; else c[k++] = b[j++]; } while (i < n) c[k++] = a[i++]; while (j < m) c[k++] = b[j++];}
解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成2组A,B,如果这2组组内的数据都是有序的,那么就可以很方便的将这2组数据进行排序。如何让这2组组内数据有序了?
可以将A,B组各自再分成2组。依次类推,当分出来的小组只有1个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的2个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
过程:
归并排序
平均时间复杂度:O(NlogN)
归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。
代码实现:
public static void merge_sort(int a[],int first,int last,int temp[]){ if(first < last){ int middle = (first + last)/2; merge_sort(a,first,middle,temp);//左半部分排好序 merge_sort(a,middle+1,last,temp);//右半部分排好序 mergeArray(a,first,middle,last,temp); //合并左右部分 }}
//合并 :将两个序列a[first-middle],a[middle+1-end]合并public static void mergeArray(int a[],int first,int middle,int end,int temp[]){ int i = first; int m = middle; int j = middle+1; int n = end; int k = 0; while(i<=m && j<=n){ if(a[i] <= a[j]){ temp[k] = a[i]; k++; i++; }else{ temp[k] = a[j]; k++; j++; } } while(i<=m){ temp[k] = a[i]; k++; i++; } while(j<=n){ temp[k] = a[j]; k++; j++; } for(int ii=0;ii<k;ii++){ a[first + ii] = temp[ii]; }}
基本思想:
图示: (88,85,83,73,72,60,57,48,42,6)
Heap Sort
平均时间复杂度:O(NlogN)
由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。
java代码实现:
//构建最小堆public static void MakeMinHeap(int a[], int n){ for(int i=(n-1)/2 ; i>=0 ; i--){ MinHeapFixdown(a,i,n); }}//从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2 public static void MinHeapFixdown(int a[],int i,int n){ int j = 2*i+1; //子节点 int temp = 0; while(j<n){ //在左右子节点中寻找最小的 if(j+1<n && a[j+1]<a[j]){ j++; } if(a[i] <= a[j]) break; //较大节点下移 temp = a[i]; a[i] = a[j]; a[j] = temp; i = j; j = 2*i+1; }}
public static void MinHeap_Sort(int a[],int n){ int temp = 0; MakeMinHeap(a,n); for(int i=n-1;i>0;i--){ temp = a[0]; a[0] = a[i]; a[i] = temp; MinHeapFixdown(a,0,i); } }
基本思想:
BinSort想法非常简单,首先创建数组A[MaxValue];然后将每个数放到相应的位置上(例如17放在下标17的数组位置);最后遍历数组,即为排序后的结果。
图示:
BinSort
(1)首先确定基数为10,数组的长度也就是10.每个数34都会在这10个数中寻找自己的位置。
(2)不同于BinSort会直接将数34放在数组的下标34处,基数排序是将34分开为3和4,第一轮排序根据最末位放在数组的下标4处,第二轮排序根据倒数第二位放在数组的下标3处,然后遍历数组即可。
问题: 当序列中存在较大值时,BinSort 的排序方法会浪费大量的空间开销。
基本思想: 基数排序是在BinSort的基础上,通过基数的限制来减少空间的开销。
过程:
过程1
过程2
java代码实现:
public static void RadixSort(int A[],int temp[],int n,int k,int r,int cnt[]){ //A:原数组 //temp:临时数组 //n:序列的数字个数 //k:最大的位数2 //r:基数10 //cnt:存储bin[i]的个数 for(int i=0 , rtok=1; i<k ; i++ ,rtok = rtok*r){ //初始化 for(int j=0;j<r;j++){ cnt[j] = 0; } //计算每个箱子的数字个数 for(int j=0;j<n;j++){ cnt[(A[j]/rtok)%r]++; } //cnt[j]的个数修改为前j个箱子一共有几个数字 for(int j=1;j<r;j++){ cnt[j] = cnt[j-1] + cnt[j]; } for(int j = n-1;j>=0;j--){ //重点理解 cnt[(A[j]/rtok)%r]--; temp[cnt[(A[j]/rtok)%r]] = A[j]; } for(int j=0;j<n;j++){ A[j] = temp[j]; } }}
原文:http://my.oschina.net/u/2260184/blog/507857