1) 从LIBSVM的官网http://www.csie.ntu.edu.tw/~cjlin/libsvm/上下载最新版本的LIBSVM,当前版本为libsvm-3.18.zip
2) 解压压缩包到电脑上一位置,如:C:\Program Files\libsvm-3.18
3) 假设你使用的是64位的操作系统和matlab。此时将libsvm-3.18文件夹下的windows目录添加到matlab目录中。即在matlab目录中添加:C:\ProgramFiles\libsvm-3.18\windows。因为windows下包含了matlab可执行的二进制文件libsvmread.mexw64/libsvmwrite.mexw64/svmpredict.mexw64/svmtrain.mexw64
4) 假设你使用的是32位操作系统和matlab,则需要自己编译相应的二进制文件。
在matlab命令窗口输入
>>mex –setup
这时matlab会提示你选择编译mex文件的c/c++编译器(先输入n,再选择对应的编译器)。
选择一个你电脑上安装的c/c++编译器,例如Microsoft Visual C++ 2010
将matlab当前目录设置为:cd ‘C:\Program Files\libsvm-3.18\matlab’
输入命令make
这时你会看到当前目录生成了二进制文件(4个):
libsvmread.mexw32
libsvmwrite.mexw32
svmpredict.mexw32
svmtrain.mexw32
将当前目录添加到matlab路径中即可。
5) 例子一个测试
注意到libsvm-3.18下有一个数据文件,名称为heart_scale。这是一个libsvm格式的数据文件。可使用libsvmread函数将其转化为matlab格式。
可使用以下命令测试:
[heart_scale_label,heart_scale_inst]=libsvmread(‘heart_scale‘);
model = svmtrain(heart_scale_label,heart_scale_inst, ‘-c 1 -g 0.07‘);
[predict_label, accuracy, dec_values] =svmpredict(heart_scale_label, heart_scale_inst, model); % test the trainingdata
如果出现一行:Accuracy = 86.6667% (234/270) (classification)。就说明成功了。就可以在matlab中使用svm了。
6) 因为svmtrain和原Matlab中自带的函数有冲突所以,通过如下命令显示正在使用的是哪个版本的svmtrain函数
which svmtrain
7) 因为libsvm中的svmtrain函数与Matlab中的svmtrain函数重名,当安装libsvm后又想使用matlab自带的svmtrain函数时,可以将3)中添加的路径放到末尾。
原文:http://www.cnblogs.com/agchen/p/4840858.html