首页 > Windows开发 > 详细

《zw版·Halcon-delphi系列原创教程》 水果自动分类脚本(机器学习、人工智能)

时间:2015-10-06 10:17:05      阅读:676      评论:0      收藏:0      [点我收藏+]

《zw版·Halcon-delphi系列原创教程》

水果自动分类脚本(机器学习、人工智能)

      前面介绍了超市,流水线,酸奶的自动分类算法,下面再介绍一个水果的自动分类算法。

      

      Halcon强大的图像处理能力,令人往往会忽视其更加彪悍的机器学习、人工智能。

      分类,聚类分析,是机器学习、人工智能的核心算法之一,也是个典型的应用。

     Halcon内置的聚类分析、机器学习模块,就有:knn邻近算法、向量机SVM、GMM高斯混合模型(Gaussian Mixture Model,或者混合高斯模型,也可以简写为MOG(Mixture of Gaussian)、MLP(多层神经网络)等等。
     而且相关基本上都是汇编级的高度优化,直接调用就可以。

     目前国内、海外机器学习、人工智能方面的学者,没有几位重视这块。
     国外,可能是版权问题,毕竟,Halcon是售价高达数万欧元(不是人民币)的商业软件,而且主要用于自控、机器视觉等工业领域,而不是大学。
     国内,可能是对于Halcon的了解不够。
     其实,图像处理的核心,图像识别、分类,都离不开机器学习、人工智能
     大家看看opencv的发展路线就可以清楚看到,从cv1.0的图像,到cv1.0的机器学习,以及目前cv3.0的GPU、cuda人工智能模块,AI在其中所占据的份额越来越大。

      Halcon因为面向一线生产线,所以很多机器学习、人工智能,都是黑箱式的,无需编程,直接调用,录入内置的ocr模块,可以识别99%的标准工业字符:超市、海关、流水线
     不过,Halcon也提供了大量的机器学习模块,毕竟各种应用场合复制,必须进行定制。

 

     这个脚本,AI方面不算复杂,建模就是先拍摄几张产品的照片,直接匹配。
      通常,Halcon建模,需要进行200次(默认参数)迭代。

     脚本80多行,很简单。
    虽然这个脚本和前面的酸奶分类脚本,都很简单,其实,应用领域很广
    自动流水线、物流、智能仓库等,无论是元器件的自动识别、包裹自动分类,以及产品的QC等等,核心模块,就是这些代码、算法、

    选这个脚本,其中一个原因,是因为前几天,有人在论坛询问,如何对企业生产线的产品(零食好像?)进行自动分类。

 

 1 * This example program shows how to apply a general GMM
 2 * classification to distinguish citrus fruits using the
 3 * features area and circularity. Additionally, the
 4 * 2D feature space for the extracted fruits is visualized.
 5 * 
 6 read_image (Image, color/citrus_fruits_01)
 7 get_image_pointer1 (Image, Pointer, Type, Width, Height)
 8 dev_close_window ()
 9 dev_open_window (0, 0, Width, Height, white, WindowHandle)
10 set_display_font (WindowHandle, 12, courier, true, false)
11 dev_set_draw (margin)
12 dev_set_line_width (2)
13 dev_display (Image)
14 dev_update_window (off)
15 dev_update_pc (off)
16 dev_update_var (off)
17 * 
18 FeaturesArea := []
19 FeaturesCircularity := []
20 ClassName := [orange,lemon]
21 * 
22 * Create a GMM classifier
23 create_class_gmm (2, 2, 1, spherical, normalization, 10, 42, GMMHandle)
24 * 
25 * Add training samples
26 for i := 1 to 4 by 1
27 read_image (Image, color/citrus_fruits_ + i$.2d)
28 dev_display (Image)
29 * Add Samples
30 get_regions (Image, SelectedRegions)
31 dev_display (SelectedRegions)
32 count_obj (SelectedRegions, NumberObjects)
33 for j := 1 to NumberObjects by 1
34 select_obj (SelectedRegions, ObjectSelected, j)
35 get_features (ObjectSelected, WindowHandle, Circularity, Area, RowRegionCenter, ColumnRegionCenter)
36 FeaturesArea := [FeaturesArea,Area]
37 FeaturesCircularity := [FeaturesCircularity,Circularity]
38 FeatureVector := real([Circularity,Area])
39 if (i <= 2)
40 add_sample_class_gmm (GMMHandle, FeatureVector, 0, 0)
41 disp_message (WindowHandle, Add to Class: + ClassName[0], window, RowRegionCenter, ColumnRegionCenter - 100, black, true)
42 else
43 add_sample_class_gmm (GMMHandle, FeatureVector, 1, 0)
44 disp_message (WindowHandle, Add to Class: + ClassName[1], window, RowRegionCenter, ColumnRegionCenter - 100, black, true)
45 endif
46 endfor
47 disp_continue_message (WindowHandle, black, true)
48 stop ()
49 endfor
50 dev_clear_window ()
51 * 
52 * Visualize the feature space
53 visualize_2D_feature_space (Cross, Height, Width, WindowHandle, FeaturesArea[0:5], FeaturesCircularity[0:5], dim gray, 18)
54 * oranges, 40, 440
55 visualize_2D_feature_space (Cross, Height, Width, WindowHandle, FeaturesArea[6:11], FeaturesCircularity[6:11], light gray, 18)
56 * lemons, 70, 440
57 disp_continue_message (WindowHandle, black, true)
58 stop ()
59 * 
60 * Train the classifier
61 train_class_gmm (GMMHandle, 100, 0.001, training, 0.0001, Centers, Iter)
62 * 
63 * Classify
64 for i := 1 to 15 by 1
65 read_image (Image, color/citrus_fruits_ + i$.2d)
66 dev_display (Image)
67 * Classify Image, 10, 10
68 get_regions (Image, SelectedRegions)
69 dev_display (SelectedRegions)
70 count_obj (SelectedRegions, NumberObjects)
71 for j := 1 to NumberObjects by 1
72 select_obj (SelectedRegions, ObjectSelected, j)
73 get_features (ObjectSelected, WindowHandle, Circularity, Area, RowRegionCenter, ColumnRegionCenter)
74 FeaturesArea := [FeaturesArea,Area]
75 FeaturesCircularity := [FeaturesCircularity,Circularity]
76 FeatureVector := real([Circularity,Area])
77 classify_class_gmm (GMMHandle, FeatureVector, 1, ClassID, ClassProb, Density, KSigmaProb)
78 disp_message (WindowHandle, Class:  + ClassName[ClassID], window, RowRegionCenter, ColumnRegionCenter - 100, black, true)
79 disp_message (WindowHandle, KSigmaProb:  + KSigmaProb, window, RowRegionCenter + 30, ColumnRegionCenter - 100, black, true)
80 endfor
81 if (i != 15)
82 disp_continue_message (WindowHandle, black, true)
83 endif
84 stop ()
85 endfor
86 * 
87 * Clear the classifier from memory
88 clear_class_gmm (GMMHandle)

 


【《zw版·Halcon-delphi系列原创教程》,网址,cnblogs.com/ziwang/】

《zw版·Halcon-delphi系列原创教程》 水果自动分类脚本(机器学习、人工智能)

原文:http://www.cnblogs.com/ziwang/p/4856713.html

(0)
(1)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!