题意:有一堆杂志要送到N个地点,有3两出租车可以用,每辆杂志可以载无限多的杂志,初始3两车都在1地点,两地点距离由D[i][j]给出,第i个地点只有第i- 1个地点送了杂志之后才能送,
求使用3两车送完杂志的最少距离.
思路:题目中的条件:第i个地点只有第i- 1个地点送了杂志之后才能送 给出了很好的一个阶段划分.
设dp[i][j][k][m]为送第i个地点的时候3两车分别在j,k,m位置
那么dp[i][j][k][m] = min(dp[i - 1][j][m][k] + D[j][i], dp[i - 1][j][m][k] + D[k][i], dp[i - 1][j][m][k] + D[m][i])
base case: dp[1][1][1][1] = 0
#include <cstdio> #include <memory.h> #include <algorithm> using namespace std; const int MAX = 31; int main(int argc, char const *argv[]){ int dp[MAX][MAX][MAX][MAX]; int D[MAX][MAX]; int M, N; scanf("%d", &M); while(M--){ scanf("%d", &N); for(int i = 1; i < N; ++i){ for(int j = i + 1; j <= N; ++j){ int v; scanf("%d", &v); D[i][j] = D[j][i] = v; } } memset(dp, 0x6f, sizeof(dp)); dp[1][1][1][1] = 0; for(int i = 2; i <= N; ++i){ for(int j = 1; j <= N; ++j){ for(int k = 1; k <= N; ++k){ for(int m = 1; m <= N; ++m){ if(dp[i - 1][j][k][m] == 0x6f6f6f6f)continue; dp[i][i][k][m] = min(dp[i][i][k][m], dp[i - 1][j][k][m] + D[j][i]); dp[i][j][i][m] = min(dp[i][j][i][m], dp[i - 1][j][k][m] + D[k][i]); dp[i][j][k][i] = min(dp[i][j][k][i], dp[i - 1][j][k][m] + D[m][i]); } } } } printf("%d\n", *min_element(&dp[N][0][0][0], &dp[N][N][N][N])); } return 0; }
ZOJ 1428 Magazine Delivery(DP),布布扣,bubuko.com
ZOJ 1428 Magazine Delivery(DP)
原文:http://blog.csdn.net/zxjcarrot/article/details/22895007