首页 > 其他 > 详细

4Sum

时间:2014-04-04 17:27:16      阅读:552      评论:0      收藏:0      [点我收藏+]

Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? 

Find all unique triplets in the array which gives the sum of zero.
Note:
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? 
Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a <= b <= c <= d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)

bubuko.com,布布扣
 1 class Solution {
 2 public:
 3     vector<vector<int> > fourSum(vector<int> &num, int target) {
 4         vector<vector<int> > res;
 5         if(num.size() < 4) {
 6             return res;
 7         }
 8         int N = num.size();
 9         sort(num.begin(), num.end());
10         for(int i = N-1; i >= 3; i--) {
11             if(i != N-1 && num[i] == num[i+1]) 
12                 continue;
13             for(int j = i-1; j >= 2; j--) {
14                 if(j != i-1 && num[j] == num[j+1]) 
15                     continue;
16                 int l = 0, r = j-1;
17                 while(l < r) {
18                     if(l != 0 && num[l] == num[l-1]) { l++; continue; }
19                     if(r != j-1 && num[r] == num[r+1]) { r--; continue; }
20                     int sum = num[i] + num[j] + num[l] + num[r];
21                     if(sum == target) {
22                         vector<int> tmp(4);
23                         tmp[0] = num[l];
24                         tmp[1] = num[r];
25                         tmp[2] = num[j];
26                         tmp[3] = num[i];
27                         res.push_back(tmp);
28                         l++; 
29                         r--;
30                     }
31                     else if(sum < target) { l++; }
32                     else { r--; }
33                 }
34             }
35         }
36         return res;
37     }
38 };
bubuko.com,布布扣

 

4Sum,布布扣,bubuko.com

4Sum

原文:http://www.cnblogs.com/zhengjiankang/p/3644641.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!