首页 > 其他 > 详细

Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

时间:2015-10-14 17:28:20      阅读:301      评论:0      收藏:0      [点我收藏+]

Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$

则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部分恰为$\psi_{n}(z)$.

 

Weierstrass因子分解定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,则必存在$D$上的全纯函数$f(z)$使得$f$以$\{a_{n}\}$为其零点集,且每个零点$a_{n}$的阶数恰为$k_{n}$.

 

插值定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列多项式$$P_{n}(z)=\sum_{j=0}^{k_{n}}c_{n,j}(z-a_{n})^j$$,则必存在$D$上的全纯函数$f(z)$使得$f$在每个$a_{n}$处的Taylor级数的前$k_{n}+1$项恰为$P_{n}(z)$.换言之恒有$$\frac{f^{(j)}(a_{n})}{j!}\equiv c_{n,j},j=0,1,\cdots,k_{n}.$$

Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

原文:http://www.cnblogs.com/qq3232361332/p/4876141.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!