首页 > 其他 > 详细

上盒维数和填充维数

时间:2015-10-15 09:54:51      阅读:278      评论:0      收藏:0      [点我收藏+]

 

Let $X$ be a totally bounded metric space. 

(1) If $X$ is compact and if $\overline{\dim}_MU\ge s$ for every non-empty open set $U\subset X,$ then $\dim_PX\ge s.$

(2)  If $\dim_PX>s,$ then there is a closed set $C\subset X$ such that $\dim_P(C \cap U)>s$ for every open set $U$ which intersects $C.$

For part (1) see Falconer, Fractal Geometry, Proposition 3.9, for part (2) see Falconer and Howroyd, Projection theorems for box and packing dimensions, Lemma4.

上盒维数和填充维数

原文:http://www.cnblogs.com/jinjun/p/4881327.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!