首页 > 其他 > 详细

On One Side Kolmogorov type inequalities

时间:2014-01-21 21:35:24      阅读:342      评论:0      收藏:0      [点我收藏+]

 

Let Xbubuko.com,布布扣1bubuko.com,布布扣,Xbubuko.com,布布扣2bubuko.com,布布扣,,Xbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 be independent random variables. Denote

Sbubuko.com,布布扣nbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣Xbubuko.com,布布扣ibubuko.com,布布扣.bubuko.com,布布扣
The well known Kolmogrov inequality can stated as for all ε0bubuko.com,布布扣
P(maxbubuko.com,布布扣1jnbubuko.com,布布扣|Sbubuko.com,布布扣jbubuko.com,布布扣|ε)Var(Sbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣
  

The one side kolmogrov type ineqalites are stated as for all ε0bubuko.com,布布扣

P(maxbubuko.com,布布扣1jnbubuko.com,布布扣Sbubuko.com,布布扣jbubuko.com,布布扣ε)Var(Sbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣εbubuko.com,布布扣2bubuko.com,布布扣+Var(Sbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣
  We will prove this inequality in the following.

Proposition. LetXbubuko.com,布布扣 be a random variable with Var(X)<bubuko.com,布布扣 . Then for all ε0bubuko.com,布布扣

P(Xε)Var(X)bubuko.com,布布扣εbubuko.com,布布扣2bubuko.com,布布扣+Var(X)bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣
  

Proof. Without loss of generality, we may assume that E(X)=0bubuko.com,布布扣 . Then

ε=E(ε?X)=E{(ε  ?X)Ibubuko.com,布布扣X<εbubuko.com,布布扣}+E{(ε  ?X)Ibubuko.com,布布扣Xεbubuko.com,布布扣}E{(ε  ?X)Ibubuko.com,布布扣X<εbubuko.com,布布扣}.bubuko.com,布布扣
By Cauchy-Schwardz‘s inequality, We have
εbubuko.com,布布扣2bubuko.com,布布扣[E{(ε  ?X)Ibubuko.com,布布扣Xεbubuko.com,布布扣}]bubuko.com,布布扣2bubuko.com,布布扣E(ε +X)bubuko.com,布布扣2bubuko.com,布布扣P(Xε)=[εbubuko.com,布布扣2bubuko.com,布布扣+Var(X)][1?P(X>ε)].bubuko.com,布布扣
Therefor,
P(Xε)Var(X)bubuko.com,布布扣εbubuko.com,布布扣2bubuko.com,布布扣+Var(X)bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣

Proof of the one side Kolmogorov type inequality. Let Λ={maxbubuko.com,布布扣1\lejnbubuko.com,布布扣Sbubuko.com,布布扣jbubuko.com,布布扣 ε}bubuko.com,布布扣 and Λbubuko.com,布布扣kbubuko.com,布布扣={maxbubuko.com,布布扣1j<kbubuko.com,布布扣Sbubuko.com,布布扣jbubuko.com,布布扣<ε,Sbubuko.com,布布扣kbubuko.com,布布扣ε}bubuko.com,布布扣 , then Λ=?bubuko.com,布布扣nbubuko.com,布布扣k=1bubuko.com,布布扣Λbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣 . Without loss of generality, we assume that E(Xbubuko.com,布布扣jbubuko.com,布布扣)=0,j=1,,n.bubuko.com,布布扣 Then by the independence of the random variables,

εbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣E[ε?Sbubuko.com,布布扣nbubuko.com,布布扣]=E[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣]+[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣cbubuko.com,布布扣Λbubuko.com,布布扣]bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]+[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣]=bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣E[{(ε?Sbubuko.com,布布扣kbubuko.com,布布扣)?(Sbubuko.com,布布扣nbubuko.com,布布扣?Sbubuko.com,布布扣kbubuko.com,布布扣)}Ibubuko.com,布布扣Λbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]+[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣]bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣E[(ε?Sbubuko.com,布布扣kbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]+bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣[E(Sbubuko.com,布布扣nbubuko.com,布布扣?Sbubuko.com,布布扣kbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]+E[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣]bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣E[(ε?Sbubuko.com,布布扣kbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]+E[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣]bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣E[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

By Cauchy-Schwardz‘s inequality, we have

εbubuko.com,布布扣2bubuko.com,布布扣{E[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣]}bubuko.com,布布扣2bubuko.com,布布扣E[(ε?Sbubuko.com,布布扣nbubuko.com,布布扣)]bubuko.com,布布扣2bubuko.com,布布扣P(Ibubuko.com,布布扣Λbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣)=[εbubuko.com,布布扣2bubuko.com,布布扣+Var(Sbubuko.com,布布扣2bubuko.com,布布扣nbubuko.com,布布扣)][1?P(Λ)].bubuko.com,布布扣
Therefore,

P(Xε)Var(X)bubuko.com,布布扣εbubuko.com,布布扣2bubuko.com,布布扣+Var(X)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
as the inequality claimed.

The inequality is also true for martingale difference sequence, the proof is samilar. 

On One Side Kolmogorov type inequalities

原文:http://www.cnblogs.com/levin2013/p/3528824.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!