在书”神经网络与机器学习“中,经常要用到一个数据集,就是双月数据集,作者貌似没提供生成这个数据集的代码,网上找了一个matlab版本,生成效果如下
代码如下:
1 function data=dbmoon(N,d,r,w) 2 % Usage: data=dbmoon(N,d,r,w) 3 % doublemoon.m - genereate the double moon data set in Haykin‘s book titled 4 % "neural networks and learning machine" third edition 2009 Pearson 5 % Figure 1.8 pp. 61 6 % The data set contains two regions A and B representing 2 classes 7 % each region is a half ring with radius r = 10, width = 6, one is upper 8 % half and the other is lower half 9 % d: distance between the two regions 10 % will generate region A centered at (0, 0) and region B is a mirror image 11 % of region A (w.r.t. x axis) with a (r, d) shift of origin 12 % N: # of samples each class, default = 1000 13 % d: seperation of two class, negative value means overlapping (default=1) 14 % r: radius (default=10), w: width of ring (default=6) 15 % 16 % (C) 2010 by Yu Hen Hu 17 % Created: Sept. 3, 2010 18 19 % clear all; close all; 20 if nargin<4, w=6; end 21 if nargin<3, r=10; end 22 if nargin<2, d=1; end 23 if nargin < 1, N=1000; end 24 25 % generate region A: 26 % first generate a uniformly random distributed data points from (-r-w/2, 0) 27 % to (r+w/2, r+w/2) 28 N1=10*N; % generate more points and select those meet criteria 29 w2=w/2; 30 done=0; data=[]; tmp1=[]; 31 while ~done, 32 tmp=[2*(r+w2)*(rand(N1,1)-0.5) (r+w2)*rand(N1,1)]; 33 % 3rd column of tmp is the magnitude of each data point 34 tmp(:,3)=sqrt(tmp(:,1).*tmp(:,1)+tmp(:,2).*tmp(:,2)); 35 idx=find([tmp(:,3)>r-w2] & [tmp(:,3)<r+w2]); 36 tmp1=[tmp1;tmp(idx,1:2)]; 37 if length(idx)>= N, 38 done=1; 39 end 40 % if not enough data point, generate more and test 41 end 42 % region A data and class label 0 43 % region B data is region A data flip y coordinate - d, and x coordinate +r 44 data=[tmp1(1:N,:) zeros(N,1); 45 [tmp1(1:N,1)+r -tmp1(1:N,2)-d ones(N,1)]]; 46 47 plot(data(1:N,1),data(1:N,2),‘.r‘,data(N+1:end,1),data(N+1:end,2),‘.b‘); 48 title([‘Double moon data set, d = ‘ num2str(d)]), 49 axis([-r-w2 2*r+w2 -r-w2-d r+w2]) 50 51 save dbmoon N r w d data;
由于最近使用python,所以使用python翻译了一下matlab版本的代码,自己写了一个python版本
代码如下:
1 # Usage: data=dbmoon(N,d,r,w) 2 # dbmoon.py - genereate the double moon data set in Haykin‘s book titled 3 # "neural networks and learning machine" third edition 2009 Pearson 4 # Figure 1.8 pp. 61 5 # The data set contains two regions A and B representing 2 classes 6 # each region is a half ring with radius r = 10, width = 6, one is upper 7 # half and the other is lower half 8 # d: distance between the two regions 9 # will generate region A centered at (0, 0) and region B is a mirror image 10 # of region A (w.r.t. x axis) with a (r, d) shift of origin 11 # N: # of samples each class, default = 1000 12 # d: seperation of two class, negative value means overlapping (default=1) 13 # r: radius (default=10), w: width of ring (default=6) 14 # 15 # (C) 2015 by Wanqian Luo 16 # Created: Oct. 25, 2010 17 18 import numpy as np 19 def dbmoon(N=1000, d=1, r=10, w=6): 20 N1 = 10*N 21 w2 = w/2 22 done = True 23 data = np.empty(0) 24 while done: 25 tmp_x = 2*(r+w2)*(np.random.random([N1,1])-0.5) 26 tmp_y = (r+w2)*np.random.random([N1,1]) 27 tmp = np.concatenate((tmp_x, tmp_y), axis=1) 28 tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y) 29 30 idx = np.logical_and(tmp_ds>(r-w2), tmp_ds<(r+w2)) 31 idx = (idx.nonzero())[0] 32 33 if data.shape[0] == 0: 34 data = tmp.take(idx,axis=0) 35 else: 36 data = np.concatenate((data, tmp.take(idx,axis=0)),axis=0) 37 if data.shape[0] >= N: 38 done = False 39 40 db_moon = data[0:N,:] 41 data_t = np.empty([N,2]) 42 data_t[:,0] = data[0:N,0] + r 43 data_t[:,1] = -data[0:N,1] - d 44 db_moon = np.concatenate((db_moon, data_t), axis=0) 45 return db_moon
效果如下:
提供下代码下载,里面包含了如何调用代码的demo:http://pan.baidu.com/s/1bnsNrm3 密码:2ekd
原文:http://www.cnblogs.com/cpointer/p/4908216.html