在上一节中,给出了Task在Executor上的运行代码演示,我们知道代码的最终运行通过的是TaskRunner方法
class TaskRunner(
execBackend: ExecutorBackend,
val taskId: Long,
val attemptNumber: Int,
taskName: String,
serializedTask: ByteBuffer)
extends Runnable {
//其它无关代码省略
//向Driver端发状态更新
execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
//其它非关键代码省略
//执行完成后,通知Driver端进行状态更新
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
} catch {
//出错时,通知Driver端的状态更新
//代码省略
}
状态更新时,先调用的是CoarseGrainedExecutorBackend中的statusUpdate方法
override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
val msg = StatusUpdate(executorId, taskId, state, data)
driver match {
//将Driver端发送StatusUpdate消息
case Some(driverRef) => driverRef.send(msg)
case None => logWarning(s"Drop $msg because has not yet connected to driver")
}
}
}
DriverEndpoint中的receive方法接收并处理发送过来的StatusUpdate消息,具体源码如下:
override def receive: PartialFunction[Any, Unit] = {
//接收StatusUpdate发送过来的消息
case StatusUpdate(executorId, taskId, state, data) =>
//调用TaskSchedulerImpl中的statusUpdate方法
scheduler.statusUpdate(taskId, state, data.value)
//
if (TaskState.isFinished(state)) {
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.freeCores += scheduler.CPUS_PER_TASK
makeOffers(executorId)
case None =>
// Ignoring the update since we don‘t know about the executor.
logWarning(s"Ignored task status update ($taskId state $state) " +
s"from unknown executor with ID $executorId")
}
}
case ReviveOffers =>
makeOffers()
case KillTask(taskId, executorId, interruptThread) =>
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.executorEndpoint.send(KillTask(taskId, executorId, interruptThread))
case None =>
// Ignoring the task kill since the executor is not registered.
logWarning(s"Attempted to kill task $taskId for unknown executor $executorId.")
}
}
TaskSchedulerImpl中的statusUpdate方法源码如下:
def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {
var failedExecutor: Option[String] = None
synchronized {
try {
if (state == TaskState.LOST && taskIdToExecutorId.contains(tid)) {
// We lost this entire executor, so remember that it‘s gone
val execId = taskIdToExecutorId(tid)
if (activeExecutorIds.contains(execId)) {
removeExecutor(execId)
failedExecutor = Some(execId)
}
}
taskIdToTaskSetManager.get(tid) match {
case Some(taskSet) =>
if (TaskState.isFinished(state)) {
taskIdToTaskSetManager.remove(tid)
taskIdToExecutorId.remove(tid)
}
//任务执行成功时的处理
if (state == TaskState.FINISHED) {
taskSet.removeRunningTask(tid)
//taskResultGetter为线程池,处理执行成功的情况
taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
//任务执行不成功,包括任务执行失败、任务丢失及任务被杀死
} else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
taskSet.removeRunningTask(tid)
//处理任务执行失败的情况
taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
}
case None =>
logError(
("Ignoring update with state %s for TID %s because its task set is gone (this is " +
"likely the result of receiving duplicate task finished status updates)")
.format(state, tid))
}
} catch {
case e: Exception => logError("Exception in statusUpdate", e)
}
}
// Update the DAGScheduler without holding a lock on this, since that can deadlock
if (failedExecutor.isDefined) {
dagScheduler.executorLost(failedExecutor.get)
backend.reviveOffers()
}
}
对于Task执行成功的情况,它会调用TaskResultGetter的enqueueSuccessfulTask方法进行处理:
def enqueueSuccessfulTask(
taskSetManager: TaskSetManager, tid: Long, serializedData: ByteBuffer) {
getTaskResultExecutor.execute(new Runnable {
override def run(): Unit = Utils.logUncaughtExceptions {
try {
val (result, size) = serializer.get().deserialize[TaskResult[_]](serializedData) match {
//结果为最终的计算结果
case directResult: DirectTaskResult[_] =>
if (!taskSetManager.canFetchMoreResults(serializedData.limit())) {
return
}
// deserialize "value" without holding any lock so that it won‘t block other threads.
// We should call it here, so that when it‘s called again in
// "TaskSetManager.handleSuccessfulTask", it does not need to deserialize the value.
directResult.value()
(directResult, serializedData.limit())
//结果保存在远程Worker节点的BlockManager当中
case IndirectTaskResult(blockId, size) =>
if (!taskSetManager.canFetchMoreResults(size)) {
// dropped by executor if size is larger than maxResultSize
sparkEnv.blockManager.master.removeBlock(blockId)
return
}
logDebug("Fetching indirect task result for TID %s".format(tid))
scheduler.handleTaskGettingResult(taskSetManager, tid)
//从远程Worker获取结果
val serializedTaskResult = sparkEnv.blockManager.getRemoteBytes(blockId)
if (!serializedTaskResult.isDefined) {
/* We won‘t be able to get the task result if the machine that ran the task failed
* between when the task ended and when we tried to fetch the result, or if the
* block manager had to flush the result. */
//获取结果时,如果远程Eexecutor对应的机器出现故障或其它错误时,可能导致结果获取失败
scheduler.handleFailedTask(
taskSetManager, tid, TaskState.FINISHED, TaskResultLost)
return
}
//反序列化远程获取的结果
val deserializedResult = serializer.get().deserialize[DirectTaskResult[_]](
serializedTaskResult.get)
//删除远程结果sparkEnv.blockManager.master.removeBlock(blockId)
(deserializedResult, size)
}
result.metrics.setResultSize(size)
//TaskSchedulerImpl处理获取到的结果
scheduler.handleSuccessfulTask(taskSetManager, tid, result)
} catch {
case cnf: ClassNotFoundException =>
val loader = Thread.currentThread.getContextClassLoader
taskSetManager.abort("ClassNotFound with classloader: " + loader)
// Matching NonFatal so we don‘t catch the ControlThrowable from the "return" above.
case NonFatal(ex) =>
logError("Exception while getting task result", ex)
taskSetManager.abort("Exception while getting task result: %s".format(ex))
}
}
})
}
TaskSchedulerImpl中的handleSuccessfulTask方法将最终对计算结果进行处理,具有源码如下:
def handleSuccessfulTask(
taskSetManager: TaskSetManager,
tid: Long,
taskResult: DirectTaskResult[_]): Unit = synchronized {
//调用TaskSetManager.handleSuccessfulTask方法进行处理
taskSetManager.handleSuccessfulTask(tid, taskResult)
}
TaskSetManager.handleSuccessfulTask方法源码如下:
/**
* Marks the task as successful and notifies the DAGScheduler that a task has ended.
*/
def handleSuccessfulTask(tid: Long, result: DirectTaskResult[_]): Unit = {
val info = taskInfos(tid)
val index = info.index
info.markSuccessful()
removeRunningTask(tid)
// This method is called by "TaskSchedulerImpl.handleSuccessfulTask" which holds the
// "TaskSchedulerImpl" lock until exiting. To avoid the SPARK-7655 issue, we should not
// "deserialize" the value when holding a lock to avoid blocking other threads. So we call
// "result.value()" in "TaskResultGetter.enqueueSuccessfulTask" before reaching here.
// Note: "result.value()" only deserializes the value when it‘s called at the first time, so
// here "result.value()" just returns the value and won‘t block other threads.
//调用DagScheduler的taskEnded方法
sched.dagScheduler.taskEnded(
tasks(index), Success, result.value(), result.accumUpdates, info, result.metrics)
if (!successful(index)) {
tasksSuccessful += 1
logInfo("Finished task %s in stage %s (TID %d) in %d ms on %s (%d/%d)".format(
info.id, taskSet.id, info.taskId, info.duration, info.host, tasksSuccessful, numTasks))
// Mark successful and stop if all the tasks have succeeded.
successful(index) = true
if (tasksSuccessful == numTasks) {
isZombie = true
}
} else {
logInfo("Ignoring task-finished event for " + info.id + " in stage " + taskSet.id +
" because task " + index + " has already completed successfully")
}
failedExecutors.remove(index)
maybeFinishTaskSet()
}
进入DAGScheduler的taskEnded方法
//DAGScheduler中的taskEnded方法
/**
* Called by the TaskSetManager to report task completions or failures.
*/
def taskEnded(
task: Task[_],
reason: TaskEndReason,
result: Any,
accumUpdates: Map[Long, Any],
taskInfo: TaskInfo,
taskMetrics: TaskMetrics): Unit = {
//调用DAGSchedulerEventProcessLoop的post方法将CompletionEvent提交到事件队列中,交由eventThread进行处理,onReceive方法将处理该事件
eventProcessLoop.post(
CompletionEvent(task, reason, result, accumUpdates, taskInfo, taskMetrics))
}
跳转到onReceive方法当中,可以看到其调用的是onReceive
//DAGSchedulerEventProcessLoop中的onReceive方法
/**
* The main event loop of the DAG scheduler.
*/
override def onReceive(event: DAGSchedulerEvent): Unit = {
val timerContext = timer.time()
try {
doOnReceive(event)
} finally {
timerContext.stop()
}
}
跳转到doOnReceive方法到当中,可以看到
//DAGSchedulerEventProcessLoop中的doOnReceive方法
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case StageCancelled(stageId) =>
dagScheduler.handleStageCancellation(stageId)
case JobCancelled(jobId) =>
dagScheduler.handleJobCancellation(jobId)
case JobGroupCancelled(groupId) =>
dagScheduler.handleJobGroupCancelled(groupId)
case AllJobsCancelled =>
dagScheduler.doCancelAllJobs()
case ExecutorAdded(execId, host) =>
dagScheduler.handleExecutorAdded(execId, host)
case ExecutorLost(execId) =>
dagScheduler.handleExecutorLost(execId, fetchFailed = false)
case BeginEvent(task, taskInfo) =>
dagScheduler.handleBeginEvent(task, taskInfo)
case GettingResultEvent(taskInfo) =>
dagScheduler.handleGetTaskResult(taskInfo)
//处理CompletionEvent事件
case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
//交由DAGScheduler.handleTaskCompletion方法处理
dagScheduler.handleTaskCompletion(completion)
case TaskSetFailed(taskSet, reason, exception) =>
dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
case ResubmitFailedStages =>
dagScheduler.resubmitFailedStages()
}
DAGScheduler.handleTaskCompletion方法完成计算结果的处理
/**
* Responds to a task finishing. This is called inside the event loop so it assumes that it can
* modify the scheduler‘s internal state. Use taskEnded() to post a task end event from outside.
*/
private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
val task = event.task
val stageId = task.stageId
val taskType = Utils.getFormattedClassName(task)
outputCommitCoordinator.taskCompleted(stageId, task.partitionId,
event.taskInfo.attempt, event.reason)
// The success case is dealt with separately below, since we need to compute accumulator
// updates before posting.
if (event.reason != Success) {
val attemptId = task.stageAttemptId
listenerBus.post(SparkListenerTaskEnd(stageId, attemptId, taskType, event.reason,
event.taskInfo, event.taskMetrics))
}
if (!stageIdToStage.contains(task.stageId)) {
// Skip all the actions if the stage has been cancelled.
return
}
val stage = stageIdToStage(task.stageId)
event.reason match {
case Success =>
listenerBus.post(SparkListenerTaskEnd(stageId, stage.latestInfo.attemptId, taskType,
event.reason, event.taskInfo, event.taskMetrics))
stage.pendingTasks -= task
task match {
//处理ResultTask
case rt: ResultTask[_, _] =>
// Cast to ResultStage here because it‘s part of the ResultTask
// TODO Refactor this out to a function that accepts a ResultStage
val resultStage = stage.asInstanceOf[ResultStage]
resultStage.resultOfJob match {
case Some(job) =>
if (!job.finished(rt.outputId)) {
updateAccumulators(event)
job.finished(rt.outputId) = true
job.numFinished += 1
// If the whole job has finished, remove it
//判断job是否已处理完毕,即所有Task是否处理完毕
if (job.numFinished == job.numPartitions) {
markStageAsFinished(resultStage)
cleanupStateForJobAndIndependentStages(job)
listenerBus.post(
SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
}
// taskSucceeded runs some user code that might throw an exception. Make sure
// we are resilient against that.
//通知JobWaiter,job处理完毕
try {
job.listener.taskSucceeded(rt.outputId, event.result)
} catch {
case e: Exception =>
// TODO: Perhaps we want to mark the resultStage as failed?
job.listener.jobFailed(new SparkDriverExecutionException(e))
}
}
case None =>
logInfo("Ignoring result from " + rt + " because its job has finished")
}
//处理ShuffleMapTask
case smt: ShuffleMapTask =>
val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
updateAccumulators(event)
val status = event.result.asInstanceOf[MapStatus]
val execId = status.location.executorId
logDebug("ShuffleMapTask finished on " + execId)
if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
} else {
//结果保存到ShuffleMapStage
shuffleStage.addOutputLoc(smt.partitionId, status)
}
if (runningStages.contains(shuffleStage) && shuffleStage.pendingTasks.isEmpty) {
markStageAsFinished(shuffleStage)
logInfo("looking for newly runnable stages")
logInfo("running: " + runningStages)
logInfo("waiting: " + waitingStages)
logInfo("failed: " + failedStages)
// We supply true to increment the epoch number here in case this is a
// recomputation of the map outputs. In that case, some nodes may have cached
// locations with holes (from when we detected the error) and will need the
// epoch incremented to refetch them.
// TODO: Only increment the epoch number if this is not the first time
// we registered these map outputs.
mapOutputTracker.registerMapOutputs(
shuffleStage.shuffleDep.shuffleId,
shuffleStage.outputLocs.map(list => if (list.isEmpty) null else list.head),
changeEpoch = true)
clearCacheLocs()
//处理部分Task失败的情况
if (shuffleStage.outputLocs.contains(Nil)) {
// Some tasks had failed; let‘s resubmit this shuffleStage
// TODO: Lower-level scheduler should also deal with this
logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +
") because some of its tasks had failed: " +
shuffleStage.outputLocs.zipWithIndex.filter(_._1.isEmpty)
.map(_._2).mkString(", "))
//重新提交
submitStage(shuffleStage)
} else {
//处理其它未提交的Stage
val newlyRunnable = new ArrayBuffer[Stage]
for (shuffleStage <- waitingStages) {
logInfo("Missing parents for " + shuffleStage + ": " +
getMissingParentStages(shuffleStage))
}
for (shuffleStage <- waitingStages if getMissingParentStages(shuffleStage).isEmpty)
{
newlyRunnable += shuffleStage
}
waitingStages --= newlyRunnable
runningStages ++= newlyRunnable
for {
shuffleStage <- newlyRunnable.sortBy(_.id)
jobId <- activeJobForStage(shuffleStage)
} {
logInfo("Submitting " + shuffleStage + " (" +
shuffleStage.rdd + "), which is now runnable")
submitMissingTasks(shuffleStage, jobId)
}
}
}
}
//其它代码省略
}
执行流程:
1. org.apache.spark.executor.TaskRunner.statusUpdate方法
2. org.apache.spark.executor.CoarseGrainedExecutorBackend.statusUpdate方法
3. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#DriverEndpoint.recieve方法,DriverEndPoint是内部类
4. org.apache.spark.scheduler.TaskSchedulerImpl中的statusUpdate方法
5. org.apache.spark.scheduler.TaskResultGetter.enqueueSuccessfulTask方法
6. org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion方法
版权声明:本文为博主原创文章,未经博主允许不得转载。
Spark修炼之道(高级篇)——Spark源码阅读:第九节 Task执行成功时的结果处理
原文:http://blog.csdn.net/lovehuangjiaju/article/details/49490341