首页 > 其他 > 详细

独立集与点覆盖

时间:2015-11-03 12:03:48      阅读:260      评论:0      收藏:0      [点我收藏+]

As it is shown in the fig, we have a graph G(V, E).

技术分享

1. Inpdependent Set:  A set of nodes S\( \subset \)V is independent if no pair of nodes from S is connected by an edge.

     Eg. {\(v_0\)}, {\(v_1, v_4, v_7\)}, {\(v_1, v_3, v_4, v_7\)} 

2. Vertex Cover: A set of nodes S\(\subset\)V is a vertex cover if every edge e\(\in\)E has at least one end in S.

     Eg. {\(v_0, v_1, v_3, v_5, v_7\)}, {\(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\)} 

 

Theorem: Let G(V, E) be a graph. Then S is an independent set iff its complement V-S is a vertex cover.

Proof: Let S be an independent set, consider an arbitrary edge e\(\in\)E, where e=(u, v), since S is independent, it can not be the case that both u and v are in S. So, at least one of u or v must be in V-S. Thus, V-S must be vertex cover. Conversely, suppose V-S is a vertex cover, consider any pair of vertex u, v in S, if they are joined by an edge e, then neither end of e would be in V-S, a contrandiction.  Thus, S must be an independent set.

 

独立集与点覆盖

原文:http://www.cnblogs.com/pengwu/p/4932528.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!