首页 > 其他 > 详细

DP-Triangle

时间:2015-11-17 00:08:55      阅读:301      评论:0      收藏:0      [点我收藏+]

题目描述:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

思路:

记f(i, j)为以(x, j)为根的最短路径和。

状态转移方程:f(i, j) = min{f(i+1, j), f(i+1, j+1)} + (i, j)。

 

实现:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        for (int i = triangle.size() - 2; i >= 0; i--)
        {
            for (int j = 0; j != (triangle[i].size()); j++)
                triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]);
        }
        
        return triangle[0][0];
    }
};

 

DP-Triangle

原文:http://www.cnblogs.com/gatsbydhn/p/4970328.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!