首页 > 其他 > 详细

【遍历二叉树】02二叉树的中序遍历【Binary Tree Inorder Traversal】

时间:2014-04-08 22:03:59      阅读:419      评论:0      收藏:0      [点我收藏+]

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树,返回他的中序遍历的节点的values。

例如:

    给定一个二叉树 {1,#,2,3},

   1
         2
    /
   3

返回 [1,3,2].

笔记:

递归解决方案是微不足道的,你可以用迭代的方法吗?
困惑什么"{1,#,2,3}" 的意思吗? > read more on how binary tree is serialized on OJ.
 
二叉树序列化:
序列号的二叉树遵循的是层次遍历的顺序,‘#‘代表羡慕没有节点了,是路径的终结者。
这里有个例子:
   1
  /  2   3
    /
   4
         5
上面的二叉树可以序列化为"{1,2,3,#,#,4,#,#,5}".  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree, return the inorder traversal of its nodes‘ values.

For example:
Given binary tree {1,#,2,3},

   1
         2
    /
   3

return [1,3,2].

Note: Recursive solution is trivial, could you do it iteratively?

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ‘s Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where ‘#‘ signifies a path terminator where no node exists below.

Here‘s an example:

   1
  /  2   3
    /
   4
         5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;


void inorder(TreeNode *root, vector<int> &path)
{
    if(root != NULL)
    {
        inorder(root->left, path);
        path.push_back(root->val);
        inorder(root->right, path);
    }
}

vector<int> inorderTraversal(TreeNode *root)
{
    vector<int> path;
    inorder(root, path);
    return path;
}


// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

    ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

    PrintTree(pNodeA1);

    vector<int> ans = inorderTraversal(pNodeA1);

    for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

    DestroyTree(pNodeA1);
    return 0;
}

输出结果:
9 6 4 2 7 8 1
 

 2.非递归实现

    根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

   对于任一结点P,

  1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

  2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

  3)直到P为NULL并且栈为空则遍历结束

test.cpp:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;


//非递归中序遍历
vector<int> inorderTraversal(TreeNode *root)
{
    stack<TreeNode *> s;
    vector<int> path;
    TreeNode *p = root;
    while(p != NULL || !s.empty())
    {
        while(p != NULL)
        {
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top();
            path.push_back(p->val);
            s.pop();
            p = p->right;
        }
    }
    return path;
}


// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

    ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

    PrintTree(pNodeA1);

    vector<int> ans = inorderTraversal(pNodeA1);

    for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

    DestroyTree(pNodeA1);
    return 0;
}
 
输出结果:
9 6 4 2 7 8 1
 
 

BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};


TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);


#endif /*_BINARY_TREE_H_*/
BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */


//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

    return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

        if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

        if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

    printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

    if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

        if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

        delete pRoot;
        pRoot = NULL;

        DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

【遍历二叉树】02二叉树的中序遍历【Binary Tree Inorder Traversal】,布布扣,bubuko.com

【遍历二叉树】02二叉树的中序遍历【Binary Tree Inorder Traversal】

原文:http://www.cnblogs.com/codemylife/p/3652261.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!