首页 > 其他 > 详细

Erd\H{o}s-R\'enyi Law

时间:2015-11-18 07:02:05      阅读:248      评论:0      收藏:0      [点我收藏+]

 

Let $0<p=1-q<1$ and $X_1,X_2,\ldots$ be an i.i.d. Bernoulli sequence with $p=\mathbb{P}(X_i=1)=1-\mathbb{P}(X_i=0)$. Denote by $S_n$ the length of the longest consectutive run of heads (i.e., $1$‘s) within the first $n$ tosses. Erd\H{o}s-R\‘enyi Law tells us the asymptotic behaviors of $S_n$: almost surely,

$$\lim\limits_{n\to\infty}\frac{S_n}{\log_{1/p}n}=1.$$

 

See  1. Erd\H{o}s-R\‘enyi, On a new law of large number, J. Anal. Math., 1970. 2. Mao, Wang and Wu, Large deviation behavior for the longest head run in an IID Bernoulli sequence. J Theor Probab, 2015.

 

Erd\H{o}s-R\'enyi Law

原文:http://www.cnblogs.com/jinjun/p/4973393.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!