++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
给定一个二叉树,判断是否他自己的镜像对称的。(以自身中间,为镜像对称的)
例如羡慕这个二叉树就是对称的:
1 / 2 2 / \ / 3 4 4 3
但是下面这个就不是对称的:
1 / 2 2 \ 3 3
笔记:
如果你既能迭代的解决这个问题,又能递归的解决这个问题,那么将给你加分。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following is not:
1 / 2 2 \ 3 3
Note:
Bonus
points if you could solve it both recursively and iteratively.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
#include <iostream> #include <cstdio> #include <stack> #include <vector> #include "BinaryTree.h" using namespace std; /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ bool isSymmetric(TreeNode *left, TreeNode *right) { if (!left && !right) { return true; } if (!left || !right) { return false; } return left->val == right->val && isSymmetric(left->left, right->right) && isSymmetric(left->right, right->left); } bool isSymmetric(TreeNode *root) { return root ? isSymmetric(root->left, root->right) : true; } // 树中结点含有分叉, // 6 // / \ // 7 2 // / \ // 1 4 // / \ // 3 5 int main() { TreeNode *pNodeA1 = CreateBinaryTreeNode(6); TreeNode *pNodeA2 = CreateBinaryTreeNode(7); TreeNode *pNodeA3 = CreateBinaryTreeNode(2); TreeNode *pNodeA4 = CreateBinaryTreeNode(1); TreeNode *pNodeA5 = CreateBinaryTreeNode(4); TreeNode *pNodeA6 = CreateBinaryTreeNode(3); TreeNode *pNodeA7 = CreateBinaryTreeNode(5); ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3); ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5); ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7); // 树中结点含有分叉, // 1 // / \ // 2 2 // / \ / \ // 3 4 4 3 TreeNode *pNodeB1 = CreateBinaryTreeNode(1); TreeNode *pNodeB2 = CreateBinaryTreeNode(2); TreeNode *pNodeB3 = CreateBinaryTreeNode(2); TreeNode *pNodeB4 = CreateBinaryTreeNode(3); TreeNode *pNodeB5 = CreateBinaryTreeNode(4); TreeNode *pNodeB6 = CreateBinaryTreeNode(4); TreeNode *pNodeB7 = CreateBinaryTreeNode(3); ConnectTreeNodes(pNodeB1, pNodeB2, pNodeB3); ConnectTreeNodes(pNodeB2, pNodeB4, pNodeB5); ConnectTreeNodes(pNodeB3, pNodeB6, pNodeB7); bool ans = isSymmetric(pNodeA1); if (ans == true) { cout << "Symmetric Tree!" << endl; } else { cout << "Not Symmetric Tree!" << endl; } bool ans1 = isSymmetric(pNodeB1); if (ans1 == true) { cout << "Symmetric Tree!" << endl; } else { cout << "Not Symmetric Tree!" << endl; } DestroyTree(pNodeA1); DestroyTree(pNodeB1); return 0; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
#include <iostream> #include <cstdio> #include <stack> #include <vector> #include "BinaryTree.h" using namespace std; /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ bool isSymmetric(TreeNode *root) { if (!root) { return true; } stack<TreeNode *> s; s.push(root->left); s.push(root->right); TreeNode *p, *q; while (!s.empty()) { p = s.top(); s.pop(); q = s.top(); s.pop(); if (!p && !q) { continue; } if (!p || !q) { return false; } if (p->val != q->val) { return false; } s.push(p->left); s.push(q->right); s.push(p->right); s.push(q->left); } return true; } // 树中结点含有分叉, // 6 // / \ // 7 2 // / \ // 1 4 // / \ // 3 5 int main() { TreeNode *pNodeA1 = CreateBinaryTreeNode(6); TreeNode *pNodeA2 = CreateBinaryTreeNode(7); TreeNode *pNodeA3 = CreateBinaryTreeNode(2); TreeNode *pNodeA4 = CreateBinaryTreeNode(1); TreeNode *pNodeA5 = CreateBinaryTreeNode(4); TreeNode *pNodeA6 = CreateBinaryTreeNode(3); TreeNode *pNodeA7 = CreateBinaryTreeNode(5); ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3); ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5); ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7); // 树中结点含有分叉, // 1 // / \ // 2 2 // / \ / \ // 3 4 4 3 TreeNode *pNodeB1 = CreateBinaryTreeNode(1); TreeNode *pNodeB2 = CreateBinaryTreeNode(2); TreeNode *pNodeB3 = CreateBinaryTreeNode(2); TreeNode *pNodeB4 = CreateBinaryTreeNode(3); TreeNode *pNodeB5 = CreateBinaryTreeNode(4); TreeNode *pNodeB6 = CreateBinaryTreeNode(4); TreeNode *pNodeB7 = CreateBinaryTreeNode(3); ConnectTreeNodes(pNodeB1, pNodeB2, pNodeB3); ConnectTreeNodes(pNodeB2, pNodeB4, pNodeB5); ConnectTreeNodes(pNodeB3, pNodeB6, pNodeB7); bool ans = isSymmetric(pNodeA1); if (ans == true) { cout << "Symmetric Tree!" << endl; } else { cout << "Not Symmetric Tree!" << endl; } bool ans1 = isSymmetric(pNodeB1); if (ans1 == true) { cout << "Symmetric Tree!" << endl; } else { cout << "Not Symmetric Tree!" << endl; } DestroyTree(pNodeA1); DestroyTree(pNodeB1); return 0; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
#ifndef _BINARY_TREE_H_ #define _BINARY_TREE_H_ struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; TreeNode *CreateBinaryTreeNode(int value); void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight); void PrintTreeNode(TreeNode *pNode); void PrintTree(TreeNode *pRoot); void DestroyTree(TreeNode *pRoot); #endif /*_BINARY_TREE_H_*/ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
#include <iostream> #include <cstdio> #include "BinaryTree.h" using namespace std; /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ //创建结点 TreeNode *CreateBinaryTreeNode(int value) { TreeNode *pNode = new TreeNode(value); return pNode; } //连接结点 void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight) { if(pParent != NULL) { pParent->left = pLeft; pParent->right = pRight; } } //打印节点内容以及左右子结点内容 void PrintTreeNode(TreeNode *pNode) { if(pNode != NULL) { printf("value of this node is: %d\n", pNode->val); if(pNode->left != NULL) printf("value of its left child is: %d.\n", pNode->left->val); else printf("left child is null.\n"); if(pNode->right != NULL) printf("value of its right child is: %d.\n", pNode->right->val); else printf("right child is null.\n"); } else { printf("this node is null.\n"); } printf("\n"); } //前序遍历递归方法打印结点内容 void PrintTree(TreeNode *pRoot) { PrintTreeNode(pRoot); if(pRoot != NULL) { if(pRoot->left != NULL) PrintTree(pRoot->left); if(pRoot->right != NULL) PrintTree(pRoot->right); } } void DestroyTree(TreeNode *pRoot) { if(pRoot != NULL) { TreeNode *pLeft = pRoot->left; TreeNode *pRight = pRoot->right; delete pRoot; pRoot = NULL; DestroyTree(pLeft); DestroyTree(pRight); } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
bool isSymmetric(TreeNode *root) { if(root == NULL) { return true; } queue<TreeNode *> lt, rt; if(root->left != NULL) { lt.push(root->left); } if(root->right != NULL) { rt.push(root->right); } TreeNode *l; TreeNode *r; while(!lt.empty() && !rt.empty()) { l = lt.front(); lt.pop(); r = rt.front(); rt.pop(); if(l == NULL && r == NULL) { continue; } if( (l != NULL && r == NULL) || (l == NULL && r != NULL) ) { return false; } if(l->val != r->val) { return false; } /*这个入队列的顺序很重要*/ lt.push(l->left); lt.push(l->right); rt.push(r->right); rt.push(r->left); } if(lt.empty() && rt.empty()) { return true; } else { return false; } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
bool isSameTree(TreeNode *p, TreeNode *q) { if(p == NULL) { return q == NULL; } else if(q == NULL) { return false; } else if(p->val == q->val) { return isSameTree(p->left, q->left) && isSameTree(p->right, q->right); } else { return false; } } |
【遍历二叉树】09判断二叉树是否关于自己镜像对称【Symmetric Tree】,布布扣,bubuko.com
【遍历二叉树】09判断二叉树是否关于自己镜像对称【Symmetric Tree】
原文:http://www.cnblogs.com/codemylife/p/3652343.html