Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 9361 | Accepted: 4218 | |
Case Time Limit: 2000MS |
Description
Farmer John has noticed that the quality of milk given by his cows varies from day to day. On further investigation, he discovered that although he can‘t predict the quality of milk from one day to the next, there are some regular patterns in the daily milk quality.
To perform a rigorous study, he has invented a complex classification scheme by which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, and has recorded data from a single cow over N (1 ≤ N≤ 20,000) days. He wishes to find the longest pattern of samples which repeats identically at least K (2 ≤ K ≤ N) times. This may include overlapping patterns -- 1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.
Help Farmer John by finding the longest repeating subsequence in the sequence of samples. It is guaranteed that at least one subsequence is repeated at least K times.
Input
Output
Sample Input
8 2 1 2 3 2 3 2 3 1
Sample Output
4
Source
//4876K 172MS #include<stdio.h> #include<string.h> #include<algorithm> #define M 20007 #define MAX 1000010 using namespace std; int sa[MAX],rank[MAX],height[MAX]; int wa[MAX],wb[MAX],wv[MAX],ws[MAX]; int num[MAX],s[MAX]; int cmp(int *r,int a,int b,int l) { return r[a]==r[b]&&r[a+l]==r[b+l]; } void get_sa(int *r,int n,int m)//求get函数 { int i,j,p,*x=wa,*y=wb,*t; for(i=0; i<m; i++)ws[i]=0; for(i=0; i<n; i++)ws[x[i]=r[i]]++; for(i=1; i<m; i++)ws[i]+=ws[i-1]; for(i=n-1; i>=0; i--)sa[--ws[x[i]]]=i; for(j=1,p=1; p<n; j*=2,m=p) { for(p=0,i=n-j; i<n; i++)y[p++]=i; for(i=0; i<n; i++)if(sa[i]>=j)y[p++]=sa[i]-j; for(i=0; i<n; i++)wv[i]=x[y[i]]; for(i=0; i<m; i++)ws[i]=0; for(i=0; i<n; i++)ws[wv[i]]++; for(i=1; i<m; i++)ws[i]+=ws[i-1]; for(i=n-1; i>=0; i--)sa[--ws[wv[i]]]=y[i]; for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1; i<n; i++) x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++; } } void get_height(int *r,int n)//求height函数 { int i,j,k=0; for(i=1; i<=n; i++)rank[sa[i]]=i; //求rank函数 for(i=0; i<n; height[rank[i++]]=k) for(k?k--:0,j=sa[rank[i]-1]; r[i+k]==r[j+k]; k++); } int solve(int n,int k)//二分求解最长长度 { int maxx=n,minn=1; while(minn<=maxx) { int mid=(minn+maxx)/2,count=1,flag=0; for(int i=2; i<=n; i++) if(height[i]<mid){count=1;}//如果最长公共前缀小于mid,那么count就得重新开始计数 else { count++; if(count==k)//如果找到k个,说明此长度满足 { flag=1;break; } } if(flag){minn=mid+1;} else maxx=mid-1; } return maxx; } int main() { //freopen("in.txt","r",stdin); int n,k; while(scanf("%d%d",&n,&k)!=EOF) { for(int i=0; i<n; i++) scanf("%d",&num[i]); get_sa(num,n+1,MAX); get_height(num,n); printf("%d\n",solve(n,k)); } return 0; }
POJ 3261 Milk Patterns 求可重叠的 k 次最长重复子串(后缀数组),布布扣,bubuko.com
POJ 3261 Milk Patterns 求可重叠的 k 次最长重复子串(后缀数组)
原文:http://blog.csdn.net/crescent__moon/article/details/23208445