线性时间选择(Linear Select):这个名字不太好理解,什么叫线性时间选择?一句话,在线性时间内完成选择。一般情况下是这样的,我们想要找出一个数组中的最大值或最小值,那就只需要一次排列,然后输出第一个或最后一个元素就行了,但如果是要找出一个数组中的第k小的元素呢?
在一般情况下,可以用RandomizedSelect方法来找出第k小的元素,平均时间是O(n),但在最坏情况下,所用的时间则是n^2,因此,本文讨论的就是在最坏情况下,如何在O(n)时间内完成选择。算法的思路总体有些复杂,但每一步其实不难,下面即给大家介绍最坏情况下的线性时间选择算法。
(1):将n个输入元素以每组5个地划分,共划分出(n/5)个组,每个组分别进行排列,找出中位数,然后按照每个组的顺序,把每个组的中位数与整个数组的前(n/5)个数交换;
(2):那么,前(n/5)个数就是各组的中位数了,然后,我们通过select方法找出这些中位数的中位数,以这个中位数的中位数为基准,调用partition方法;
(3):调用了partition方法后的基准元素正是处于数组的正确位置(前边的元素都比基准元素小,后边的元素都比基准元素大),记下基准元素前边的元素个数leftNum,如果k小于或等于leftNum,则在基准位置前的这部分调用select方法即可,如果在k大于leftNum,则在基准位置后的这部分调用select方法。
下面,我直接把代码贴出,读者可以通过我的注释来理解每一步的意义。
1 private static int select(int[] a,int l,int r,int k){ 2 if(r - l < 75){ 3 insertSort(a, l, r); //用快速排序进行排序 4 return a[l + k - 1]; 5 } 6 int group = (r-l+5)/5; 7 for(int i = 0;i<group;i++){ 8 int left = l+5*i; 9 int right = (l + i * 5 + 4) > r ? r : l + i * 5 + 4; //如果超出右边界就用右边界赋值 10 int mid = (left+right)/2; 11 insertSort(a, left, right); 12 swap(a, l + i, mid); // 将各组中位数与前i个 13 } 14 int pivot = select(a,l,l+group-1,(group+1)/2); //找出中位数的中位数 15 int p = partition(a,l,r,pivot); //用中位数的中位数作为基准的位置 16 int leftNum = p - l; //leftNum用来记录基准位置的前边的元素个数 17 if (k == leftNum + 1) 18 return a[p]; 19 else if (k <= leftNum) 20 return select(a, l, p - 1, k); 21 else //若k在基准位子的后边,则要从基准位置的后边数起,即第(k - leftNum - 1)个 22 return select(a, p + 1, r, k - leftNum - 1); 23 }
到此大家也可以看出,这里的partition方法与前边讲到过的快速排序所用到的partition方法稍有不同,参数个数都变了,但其实变化只是很小,只是取消了一开始定义基准位置的步骤而已,代码如下:
1 private static int partition(int[] a,int l,int r,int pivot){ //适用于线性时间选择的partition方法 2 int i = l; 3 int j = r; 4 while(true){ 5 while(a[i] <= pivot && i < r) 6 ++i; //i一直向后移动,直到出现a[i]>pivot 7 while(a[j] > pivot) 8 --j; //j一直向前移动,直到出现a[j]<pivot 9 if(i >= j) break; 10 swap(a,i,j); 11 } 12 a[l] = a[j]; 13 a[j] = pivot; 14 return j; 15 }
下面是select方法中,如果输入规模小于75时用到的插入排序算法代码:
1 private static void insertSort(int[] a, int law, int high) { //插入排序 2 for (int i = law + 1; i <= high; i++) { 3 int key = a[i]; 4 int j = i - 1; 5 while (j >= law && a[j] > key) { 6 a[j + 1] = a[j]; 7 j--; 8 } 9 a[j + 1] = key; 10 } 11 }
适用于数组元素之间的swap方法如下:
1 private static void swap(int[] a,int i,int j){ 2 int temp = a[i]; 3 a[i] = a[j]; 4 a[j] = temp; 5 }
各位可能有个疑问,为什么输入规模不足75时调用插入排序而不用线性时间选择呢?那是因为当输入规模不足75时,因为输入规模太小,时间复杂度几乎是一个常量,因此没有必要用到比较复杂的线性时间选择算法。
我还看到一个比较好懂的学习线性时间选择的动画,能形象地看到线性时间选择的执行过程,链接如下:
如果有不足之处或者对该算法有更好的建议,请提出!
算法之线性时间选择(最坏情况下),布布扣,bubuko.com
原文:http://www.cnblogs.com/Not-Famous/p/3653945.html