首页 > 其他 > 详细

机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

时间:2015-11-28 13:33:15      阅读:379      评论:0      收藏:0      [点我收藏+]

原文:http://www.zhihu.com/question/27068705

机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?修改

最近在学习机器学习,在学到交叉验证的时候,有一块内容特别的让我困惑,Error可以理解为在测试数据上跑出来的不准确率 ,即为 (1-准确率)

在训练数据上面,我们可以进行交叉验证(Cross-Validation)。
一种方法叫做K-fold Cross Validation (K折交叉验证), K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。

当K值大的时候, 我们会有更少的Bias(偏差), 更多的Variance。
当K值小的时候, 我们会有更多的Bias(偏差), 更少的Variance。

我十分不理解上述的描述,求大神来解释到底什么是Bias, Error,和Variance?
交叉验证,对于这三个东西到底有什么影响?修改
举报
添加评论 
分享
 • 邀请回答
 
按投票排序按时间排序

12 个回答

机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

原文:http://www.cnblogs.com/zhizhan/p/5002455.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!