给定一个整型已排序数组,找到一个给定值在其中的起点与终点。
你的算法复杂度必须低于O(logn)。
如果目标在数组中不会被发现,返回[-1, -1]。
例如,给定[5, 7, 7, 8, 8, 10],目标值为8,返回[3, 4]。
Given a sorted array of integers,
find the starting and ending position of a given target value.
Your algorithm‘s runtime complexity must be
in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
class Solution {
public:
vector<int> searchRange(vector<int> &nums, int target) {
vector<int> res;
int l = 0, r = nums.size() - 1;
if(nums.size() <= 0) {
res.push_back(-1);
res.push_back(-1);
return res;
} else if(nums.size() == 1) {
if(nums[0] == target) {
res.push_back(0);
res.push_back(0);
return res;
} else {
res.push_back(-1);
res.push_back(-1);
return res;
}
}
while(l <= r) {
if(nums[l] < target) {
++l;
}
if(nums[r] > target) {
--r;
}
if(nums[l] == target && nums[r] == target) {
res.push_back(l);
res.push_back(r);
return res;
}
}
res.push_back(-1);
res.push_back(-1);
return res;
}
};
随手写的,虽然能通过,不过还是看看大神的解法来提高自己。
class Solution {
private:
int binarySearchLow(vector<int>& nums, int target, int begin, int end)
{
if(begin > end) return begin;
int mid = begin + (end - begin) / 2;
if(nums[mid] < target) return binarySearchLow(nums, target, mid + 1, end);
else return binarySearchLow(nums, target, begin, mid - 1);
}
int binarySearchUp(vector<int>& nums, int target, int begin, int end)
{
if(begin > end) return end;
int mid = begin + (end - begin) / 2;
if(nums[mid] > target) return binarySearchUp(nums, target, begin, mid - 1);
else return binarySearchUp(nums, target, mid + 1, end);
}
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> res(2, -1);
if(nums.empty()) return res;
int high = binarySearchUp(nums, target, 0, nums.size() -1);
int low = binarySearchLow(nums, target, 0, nums.size() - 1);
if(high >= low)
{
res[0] = low;
res[1] = high;
return res;
}
return res;
}
};
LeetCode 34 Search for a Range
原文:http://blog.csdn.net/nomasp/article/details/50087341