Let i
=?
?x
i
i
2
(γ)
?
i
2
(γ)
∞
0
We see that ?
i
=x
i
??
i
It is positive
and symmetric and plays the role of the Laplacian on 2
(γ)
Positivity
follows by setting
The operator
Proposition
The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck operator.
Moreover, for any multi-index d
Proof.
Again consider ?
n
So, ?
H
n?1
n
Thus ?
H
n?1
=H
n
?
i
H
α?e
i
=H
α
1
,…,e
n
system. Hence
We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated
by 2
(γ)
α
,α∈N}
2
(γ)
2
(γ)
Let t
)
t≥0
=(e
?tL
)
t≥0
2
(γ)
In particular
It follows that
?tL
2
(α)
?tL
e
?sL
=e
?(s+t)L
,s,t≥0
0
t
)
t≥0
Any 2
(γ×γ)
2
(γ)
It is not
essential here that we work in our Gaussian setting. Any 2
Integrating both
sides in
\left|\left|Tf\right|\right|^{2}\le\left|\left|\Phi\right|\right|_{L^{2}(\gamma\times\gamma)}^{2}\left|\left|f\right|\right|^{2}.
We now leave the
general situation. The operator T_{t}t
T_{t}f(x)=\int_{\mathbb{R}^{d}}M_{t}^{\gamma}(x,y)f(y)d\gamma(y).
The explicit
expression for this kernel was found already in 1866 by Mehler. It is named the
Mehler kernel. Using the normalized Hermite polynomials h_{\alpha}α
M_{t}^{\gamma}(x,y)=\sum_{\alpha\in\mathbb{N}^{d}}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).
It is easy to
check that this series converges in L^{2}(\gamma\times\gamma)2
(γ×γ)
\sum_{|\alpha|<N}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).
For |\beta|<Nβ
\int\sum_{|\alpha|<N}e^{t|\alpha|}h_{\alpha}(x)h_{\alpha}(y)H_{\beta}(y)d\gamma(y)=e^{-t|\beta|}<h_{\beta},H_{\beta}h_{\beta}(x)=e^{-t|\beta|}\left|\left|H_{\beta}\right|\right|h_{\beta}(x)=e^{-t|\beta|}H_{\beta}=T_{t}H_{\beta}.
Since the
truncated kernels converge in L^{2}(\gamma\times\gamma)2
(γ×γ)
t
γ
t
?ξ
2
)(x)=π
√
e
?x
2
4
\begin{array}{rcl}H_{n}\left(y\right) & = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}e^{-\frac{y^{2}}{2}}=\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}\frac{1}{\sqrt{2\pi}}\int e^{iy\xi-\frac{^{\xi^{2}}}{2}}d\xi\\& = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi.\end{array}
Assuming that the order of summation and integration can be switched. By using the generating function of Hermite polynomial, we get
\begin{array}{rcl}M_{t}^{\gamma} & = & \sum_{n=0}^{\infty}e^{-tn}h_{n}\left(x\right)h_{n}\left(y\right)\\& = & \sum_{n=0}^{\infty}e^{-tn}\frac{1}{n!}H_{n}\left(x\right)\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}int\sum_{n=0}^{\infty}\frac{1}{n!}\left(-i\xi e^{-t}\right)^{n}H_{n}\left(x\right)e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}\int e^{i\xi\left(y-e^{t}x+\frac{\xi^{2}}{2}e^{-2t}\right)}d\xi\end{array}
Let \xi^{t}=\xi\sqrt{1-e^{-2t}} . Then, taking the inverse Fourier transform yields
M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{y^{2}}{2}}}{\sqrt{1-e^{-2t}}}e^{-\frac{\left(y-e^{-t}x\right)^{2}}{1-e^{-2t}}}.
This is a closed expression for the kernel, but it remains to verify the switch of order above. BY using dominated convergence theorem, it is ease to get the conclusion. Let d\ge1 . Then
M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{\left|y\right|^{2}}{2}}}{\sqrt{\left(1-e^{-2t}\right)^{d}}}e^{-\frac{\left|y-e^{-t}x\right|^{2}}{1-e^{-2t}}}.
Making the change of variable z=\frac{y-e^{-t}x}{\sqrt{1-e^{-2t}}} , we get
T_{t}f\left(x\right)=\int M_{t}^{\gamma}\left(x,y\right)f\left(y\right)d\gamma\left(y\right)=\int f\left(e^{-t}x+z\sqrt{1-e^{-2t}}\right)d\gamma\left(z\right).
This is sometimes called Mehler‘s formula.
\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup
原文:http://www.cnblogs.com/levin2013/p/3529557.html