首页 > 其他 > 详细

\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup

时间:2014-01-22 16:49:51      阅读:402      评论:0      收藏:0      [点我收藏+]


Let ?bubuko.com,布布扣ibubuko.com,布布扣=?bubuko.com,布布扣?xbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 . The operator ?bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣 is unbounded on Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 . We will explore its adjoint operator ?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣   in Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 . For this purpose, take f,gCbubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 , i.e., infinitely many times differentiable functions with compact support. Then

<?bubuko.com,布布扣ibubuko.com,布布扣f,g>bubuko.com,布布扣Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣(2π)bubuko.com,布布扣dbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣f(x)g(x)ebubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣1bubuko.com,布布扣(2π)bubuko.com,布布扣dbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣f(x)[xbubuko.com,布布扣ibubuko.com,布布扣g(x)??bubuko.com,布布扣ibubuko.com,布布扣g(x)]ebubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣<f,(xbubuko.com,布布扣ibubuko.com,布布扣??bubuko.com,布布扣ibubuko.com,布布扣)g>bubuko.com,布布扣Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

We see that ?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣=xbubuko.com,布布扣ibubuko.com,布布扣??bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣 , where the first term is a multiplication operator. Define a second-order differential operator by

L=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣=x???Δbubuko.com,布布扣

It is positive and symmetric and plays the role of the Laplacian on Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 . Symmetry is shown by

<Lf,g>=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣<?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣f,g>=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣<?bubuko.com,布布扣ibubuko.com,布布扣f,?bubuko.com,布布扣ibubuko.com,布布扣g>=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣<f,?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣g>=<f,Lg>bubuko.com,布布扣

Positivity follows by setting f=gbubuko.com,布布扣 in the middle expression above.

 

     The operator Lbubuko.com,布布扣 is called the Ornstein-Uhlenbeck operator.

 

Proposition The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck operator. Moreover, for any multi-index αNbubuko.com,布布扣dbubuko.com,布布扣bubuko.com,布布扣 ,

LHbubuko.com,布布扣αbubuko.com,布布扣=|α|Hbubuko.com,布布扣αbubuko.com,布布扣.bubuko.com,布布扣

Proof. Again consider d=1bubuko.com,布布扣 . We first explore the action of Dbubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣 on Hbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 .

<Dbubuko.com,布布扣?bubuko.com,布布扣Hbubuko.com,布布扣n?1bubuko.com,布布扣,Hbubuko.com,布布扣jbubuko.com,布布扣>=<Hbubuko.com,布布扣n?1bubuko.com,布布扣,DHbubuko.com,布布扣jbubuko.com,布布扣>=n<Hbubuko.com,布布扣n?1bubuko.com,布布扣,Hbubuko.com,布布扣j?1bubuko.com,布布扣>=0,jn.bubuko.com,布布扣

So, Dbubuko.com,布布扣?bubuko.com,布布扣Hbubuko.com,布布扣n?1bubuko.com,布布扣bubuko.com,布布扣 is a multiple of Hbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 . Take j=nbubuko.com,布布扣 .

<Dbubuko.com,布布扣?bubuko.com,布布扣Hbubuko.com,布布扣n?1bubuko.com,布布扣,Hbubuko.com,布布扣nbubuko.com,布布扣>=n<Hbubuko.com,布布扣n?1bubuko.com,布布扣,Hbubuko.com,布布扣n?1bubuko.com,布布扣>=n(n?1)!=n!=<Hbubuko.com,布布扣nbubuko.com,布布扣,Hbubuko.com,布布扣nbubuko.com,布布扣>.bubuko.com,布布扣

Thus Dbubuko.com,布布扣?bubuko.com,布布扣Hbubuko.com,布布扣n?1bubuko.com,布布扣=Hbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 and it follows that ?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣Hbubuko.com,布布扣α?ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣=Hbubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣 , for d1bubuko.com,布布扣 , Where ebubuko.com,布布扣1bubuko.com,布布扣,,ebubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 is the standard orthonormal

system. Hence

LHbubuko.com,布布扣αbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣Hbubuko.com,布布扣αbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣Hbubuko.com,布布扣α?ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣dbubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣Hbubuko.com,布布扣αbubuko.com,布布扣=|α|Hbubuko.com,布布扣αbubuko.com,布布扣.bubuko.com,布布扣

 

        We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated by Lbubuko.com,布布扣 . For this purpose we use our spectral decomposition of Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 . Since {Hbubuko.com,布布扣αbubuko.com,布布扣,αN}bubuko.com,布布扣 form a orthonormal system of Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 , for any fLbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 ,

f=bubuko.com,布布扣αNbubuko.com,布布扣abubuko.com,布布扣αbubuko.com,布布扣Hbubuko.com,布布扣αbubuko.com,布布扣.bubuko.com,布布扣

Let (Tbubuko.com,布布扣tbubuko.com,布布扣)bubuko.com,布布扣t0bubuko.com,布布扣=(ebubuko.com,布布扣?tLbubuko.com,布布扣)bubuko.com,布布扣t0bubuko.com,布布扣bubuko.com,布布扣 be the family of bounded linear operators acting on Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 by

ebubuko.com,布布扣?tLbubuko.com,布布扣f=bubuko.com,布布扣αNbubuko.com,布布扣dbubuko.com,布布扣bubuko.com,布布扣ebubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣abubuko.com,布布扣αbubuko.com,布布扣Hbubuko.com,布布扣αbubuko.com,布布扣.bubuko.com,布布扣

In particular

ebubuko.com,布布扣?tLbubuko.com,布布扣Hbubuko.com,布布扣αbubuko.com,布布扣=ebubuko.com,布布扣?tbubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Hbubuko.com,布布扣αbubuko.com,布布扣.bubuko.com,布布扣

It follows that ebubuko.com,布布扣?tLbubuko.com,布布扣bubuko.com,布布扣 is a bounded operator on Lbubuko.com,布布扣2bubuko.com,布布扣(α)bubuko.com,布布扣 for any t0$andthat$ebubuko.com,布布扣?tLbubuko.com,布布扣ebubuko.com,布布扣?sLbubuko.com,布布扣=ebubuko.com,布布扣?(s+t)Lbubuko.com,布布扣,s,t0bubuko.com,布布扣 . Since Tbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 is the identity, (Tbubuko.com,布布扣tbubuko.com,布布扣)bubuko.com,布布扣t0bubuko.com,布布扣bubuko.com,布布扣 forms a semigroup.

 

Any ΦLbubuko.com,布布扣2bubuko.com,布布扣(γ×γ)bubuko.com,布布扣 defines a bounded linear operator on Lbubuko.com,布布扣2bubuko.com,布布扣(γ)bubuko.com,布布扣 by

Tf(x)=Φ(x,y)f(y)dγ(y).bubuko.com,布布扣

It is not essential here that we work in our Gaussian setting. Any Lbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 -space would do fine. We verify the boundedness. The Cauchy-Schwardz inequality gives that

(Tf(x))bubuko.com,布布扣2bubuko.com,布布扣|Φ(x,y)|bubuko.com,布布扣2bubuko.com,布布扣dγ(y)|f(y)|bubuko.com,布布扣2bubuko.com,布布扣dγ(y).bubuko.com,布布扣

Integrating both sides in xbubuko.com,布布扣 leads to

\left|\left|Tf\right|\right|^{2}\le\left|\left|\Phi\right|\right|_{L^{2}(\gamma\times\gamma)}^{2}\left|\left|f\right|\right|^{2}.

||Tf||bubuko.com,布布扣2bubuko.com,布布扣||Φ||bubuko.com,布布扣2bubuko.com,布布扣Lbubuko.com,布布扣2bubuko.com,布布扣(γ×γ)bubuko.com,布布扣||f||bubuko.com,布布扣2bubuko.com,布布扣.bubuko.com,布布扣

We now leave the general situation. The operator T_{t}Tbubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣 , for t>0t>0bubuko.com,布布扣 , is given by a kernel in the sense that

T_{t}f(x)=\int_{\mathbb{R}^{d}}M_{t}^{\gamma}(x,y)f(y)d\gamma(y).

Tbubuko.com,布布扣tbubuko.com,布布扣f(x)=bubuko.com,布布扣Rbubuko.com,布布扣dbubuko.com,布布扣bubuko.com,布布扣Mbubuko.com,布布扣γbubuko.com,布布扣tbubuko.com,布布扣(x,y)f(y)dγ(y).bubuko.com,布布扣

The explicit expression for this kernel was found already in 1866 by Mehler. It is named the Mehler kernel. Using the normalized Hermite polynomials h_{\alpha}hbubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣 , we shall first verify that the kernel can be expressed in the form

M_{t}^{\gamma}(x,y)=\sum_{\alpha\in\mathbb{N}^{d}}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).

Mbubuko.com,布布扣γbubuko.com,布布扣tbubuko.com,布布扣(x,y)=bubuko.com,布布扣αNbubuko.com,布布扣dbubuko.com,布布扣bubuko.com,布布扣ebubuko.com,布布扣?t|α|bubuko.com,布布扣hbubuko.com,布布扣αbubuko.com,布布扣(x)hbubuko.com,布布扣αbubuko.com,布布扣(y).bubuko.com,布布扣

It is easy to check that this series converges in L^{2}(\gamma\times\gamma)Lbubuko.com,布布扣2bubuko.com,布布扣(γ×γ)bubuko.com,布布扣 . Consider, for $N\in\mathbb{N}$, the truncated kernel

\sum_{|\alpha|<N}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).

bubuko.com,布布扣|α|<Nbubuko.com,布布扣ebubuko.com,布布扣?t|α|bubuko.com,布布扣hbubuko.com,布布扣αbubuko.com,布布扣(x)hbubuko.com,布布扣αbubuko.com,布布扣(y).bubuko.com,布布扣

For |\beta|<N|β|<Nbubuko.com,布布扣 , the corresponding operator acts on H_{\beta}Hbubuko.com,布布扣βbubuko.com,布布扣bubuko.com,布布扣 as

\int\sum_{|\alpha|<N}e^{t|\alpha|}h_{\alpha}(x)h_{\alpha}(y)H_{\beta}(y)d\gamma(y)=e^{-t|\beta|}<h_{\beta},H_{\beta}h_{\beta}(x)=e^{-t|\beta|}\left|\left|H_{\beta}\right|\right|h_{\beta}(x)=e^{-t|\beta|}H_{\beta}=T_{t}H_{\beta}.

bubuko.com,布布扣|α|<Nbubuko.com,布布扣ebubuko.com,布布扣t|α|bubuko.com,布布扣hbubuko.com,布布扣αbubuko.com,布布扣(x)hbubuko.com,布布扣αbubuko.com,布布扣(y)Hbubuko.com,布布扣βbubuko.com,布布扣(y)dγ(y)=ebubuko.com,布布扣?t|β|bubuko.com,布布扣<hbubuko.com,布布扣βbubuko.com,布布扣,Hbubuko.com,布布扣βbubuko.com,布布扣hbubuko.com,布布扣βbubuko.com,布布扣(x)=ebubuko.com,布布扣?t|β|bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Hbubuko.com,布布扣βbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣hbubuko.com,布布扣βbubuko.com,布布扣(x)=ebubuko.com,布布扣?t|β|bubuko.com,布布扣Hbubuko.com,布布扣βbubuko.com,布布扣=Tbubuko.com,布布扣tbubuko.com,布布扣Hbubuko.com,布布扣βbubuko.com,布布扣.bubuko.com,布布扣

Since the truncated kernels converge in L^{2}(\gamma\times\gamma)Lbubuko.com,布布扣2bubuko.com,布布扣(γ×γ)bubuko.com,布布扣 , the corresponding operators converge in the operator norm. We conclude that T_{t}Tbubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣 can be epresented by Mehler kernel. We next want to compute a closed expression for M_{t}^{\gamma}Mbubuko.com,布布扣γbubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣 . Let d=1d=1bubuko.com,布布扣 . Since \mathcal{F}\left(e^{-\xi^{2}}\right)(x)=\sqrt{\pi}e^{-\frac{x^{2}}{4}}F(ebubuko.com,布布扣?ξbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)(x)=πbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣ebubuko.com,布布扣?xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , where \mathcal{F} denotes the Fourier transform, H_{n} can be written

\begin{array}{rcl}H_{n}\left(y\right) & = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}e^{-\frac{y^{2}}{2}}=\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}\frac{1}{\sqrt{2\pi}}\int e^{iy\xi-\frac{^{\xi^{2}}}{2}}d\xi\\& = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi.\end{array}

Assuming that the order of summation and integration can be switched. By using the generating function of Hermite polynomial, we get

\begin{array}{rcl}M_{t}^{\gamma} & = & \sum_{n=0}^{\infty}e^{-tn}h_{n}\left(x\right)h_{n}\left(y\right)\\& = & \sum_{n=0}^{\infty}e^{-tn}\frac{1}{n!}H_{n}\left(x\right)\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}int\sum_{n=0}^{\infty}\frac{1}{n!}\left(-i\xi e^{-t}\right)^{n}H_{n}\left(x\right)e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}\int e^{i\xi\left(y-e^{t}x+\frac{\xi^{2}}{2}e^{-2t}\right)}d\xi\end{array}

Let \xi^{t}=\xi\sqrt{1-e^{-2t}} . Then, taking the inverse Fourier transform yields

M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{y^{2}}{2}}}{\sqrt{1-e^{-2t}}}e^{-\frac{\left(y-e^{-t}x\right)^{2}}{1-e^{-2t}}}.

This is a closed expression for the kernel, but it remains to verify the switch of order above. BY using dominated convergence theorem, it is ease to get the conclusion. Let d\ge1 . Then 

M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{\left|y\right|^{2}}{2}}}{\sqrt{\left(1-e^{-2t}\right)^{d}}}e^{-\frac{\left|y-e^{-t}x\right|^{2}}{1-e^{-2t}}}.

Making the change of variable z=\frac{y-e^{-t}x}{\sqrt{1-e^{-2t}}} , we get

T_{t}f\left(x\right)=\int M_{t}^{\gamma}\left(x,y\right)f\left(y\right)d\gamma\left(y\right)=\int f\left(e^{-t}x+z\sqrt{1-e^{-2t}}\right)d\gamma\left(z\right).

This is sometimes called Mehler‘s formula.

\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup

原文:http://www.cnblogs.com/levin2013/p/3529557.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!