The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n1^P + ... nK^P
where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112+ 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL
If there is no solution, simple output "Impossible".
Sample Input 1:169 5 2Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2Sample Input 2:
169 167 3Sample Output 2:
Impossible
#include <iostream>#include<vector>#include <math.h>#include<stdio.h>#pragma warning(disable:4996)using namespace std;int n, p, k;vector<int> num,numtemp;void Calc(int i, int sum, int level,vector<int> temp) {sum += pow(i, k);temp.push_back(i);if (p - temp.size() > n - sum)return;if (sum > n)return;if (level == 0) {if (sum == n) {int flag = false;if (num.size() == 0)flag = true;else {for (int j = p-1; j >=0; j--) {if (num[j] > temp[j]) {flag = false;break;}else if (num[j] < temp[j]) {flag = true;break;}}}if (flag == true) {num.clear();for (int j = 0; j < p; j++)num.push_back(temp[j]);}}return;}else {for (int j = 1; j <= i; j++) {Calc(j, sum, level - 1, temp);}}}int main(void) {cin >> n >> p >> k;int breakpoint = pow(n, 1.0 / k);/*if (p > breakpoint) {if (n == p) {cout << n << " =";for (int i = 0; i < p; i++) {cout << " " << "1" << "^" << k;if (i != p - 1)cout << " +";}}else {cout << "Impossible";}return 0;}*/int cnt = 0;for (int i = 1; i <= breakpoint; i++) {if (cnt == 2)break;if (!num.empty())cnt++;//奇技淫巧。。。。numtemp.clear();Calc(i, 0, p-1, numtemp);}if (num.size() == 0) {cout << "Impossible";}else {cout << n << " =";for (int i = 0; i < num.size(); i++) {// cout << " " << num[i] << "^" << k;printf(" %d^%d", num[i], k);if (i != num.size() - 1)printf(" +");//cout << " +";}}return 0;}
1103. Integer Factorization (30)
原文:http://www.cnblogs.com/zzandliz/p/5023354.html