分块,分成N^0.5块.O(N^1.5)预处理出sm[i][j]表示前i块中j的出现次数, ans[i][j]表示第i~j块的答案. 然后就可以O(N^0.5)回答询问了.总复杂度O((N+Q)N^0.5)
-----------------------------------------------------------------------------------------
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
using namespace std;
const int MAXN = 100009;
const int MAXB = 321;
int seq[MAXN], N, C, M, B, n, Answer = 0;
int sm[MAXB][MAXN], ans[MAXB][MAXB], cnt[MAXN];
int Tn, T[MAXB << 1], L[MAXB], R[MAXB];
inline int read() {
char c = getchar();
int ret = 0;
for(; !isdigit(c); c = getchar());
for(; isdigit(c); c = getchar()) ret = ret * 10 + c - ‘0‘;
return ret;
}
int buf[10];
inline void write(int x) {
if(!x) {
puts("0"); return;
}
int t = 0;
for(; x; x /= 10)
buf[t++] = x % 10;
while(t--)
putchar(buf[t] + ‘0‘);
puts("");
}
void Init() {
N = read(); C = read(); M = read();
for(int i = 0; i < N; i++) seq[i] = read();
B = sqrt(N);
n = N / B;
if(N % B) n++;
for(int i = 0; i < n; i++) {
L[i] = i * B;
R[i] = (i + 1) * B - 1;
}
R[n - 1] = N - 1;
int p = 0;
for(int i = 0; i < n; i++)
for(int j = L[i]; j <= R[i]; j++)
sm[i][seq[p++]]++;
for(int i = n; i--; )
for(int j = 1; j <= C; j++)
sm[i][j] += sm[i + 1][j];
for(int i = 0; i < n; i++) {
int cur_ans = 0;
for(int j = i; j < n; j++) {
if(j > i)
ans[i][j - 1] = cur_ans;
for(int k = L[j]; k <= R[j]; k++) {
int &c = seq[k];
if(cnt[c] & 1) cur_ans++;
if(!(cnt[c] & 1) && cnt[c]) cur_ans--;
cnt[c]++;
}
}
ans[i][n - 1] = cur_ans;
for(int j = L[i]; j < N; j++) cnt[seq[j]] = 0;
}
}
void Solve() {
int l = (read() + Answer) % N, r = (read() + Answer) % N;
if(l > r) swap(l, r);
int lb = l / B, rb = r / B;
if(lb + 1 >= rb) {
Answer = 0;
for(int i = l; i <= r; i++) {
int &c = seq[i];
if(cnt[c] & 1) Answer++;
if(!(cnt[c] & 1) && cnt[c]) Answer--;
cnt[c]++;
}
for(int i = l; i <= r; i++) cnt[seq[i]] = 0;
} else {
Tn = 0;
Answer = ans[++lb][rb - 1];
for(int i = lb * B; i-- > l; )
cnt[T[Tn++] = seq[i]]++;
for(int i = rb * B; i <= r; i++)
cnt[T[Tn++] = seq[i]]++;
for(int i = 0; i < Tn; i++) {
int &c = T[i], sum = sm[lb][c] - sm[rb][c];
if(!cnt[c]) continue;
if(!sum && !(cnt[c] & 1)) Answer++;
if((sum & 1) && (cnt[c] & 1)) Answer++;
if(sum && !(sum & 1) && (cnt[c] & 1)) Answer--;
cnt[c] = 0;
}
}
write(Answer);
}
int main() {
Init();
while(M--) Solve();
return 0;
}
-----------------------------------------------------------------------------------------
2821: 作诗(Poetize)
Time Limit: 50 Sec Memory Limit: 128 MB
Submit: 2234 Solved: 627
[Submit][Status][Discuss]Description
神犇SJY虐完HEOI之后给傻×LYD出了一题:
SHY是T国的公主,平时的一大爱好是作诗。
由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读其中连续的一段[l,r],从这一段中选出一些汉字构成诗。因为SHY喜欢对偶,所以SHY规定最后选出的每个汉字都必须在[l,r]里出现了正偶数次。而且SHY认为选出的汉字的种类数(两个一样的汉字称为同一种)越多越好(为了拿到更多的素材!)。于是SHY请LYD安排选法。
LYD这种傻×当然不会了,于是向你请教……
问题简述:N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次。
Input
输入第一行三个整数n、c以及m。表示文章字数、汉字的种类数、要选择M次。
第二行有n个整数,每个数Ai在[1, c]间,代表一个编码为Ai的汉字。
接下来m行每行两个整数l和r,设上一个询问的答案为ans(第一个询问时ans=0),令L=(l+ans)mod n+1, R=(r+ans)mod n+1,若L>R,交换L和R,则本次询问为[L,R]。
Output
输出共m行,每行一个整数,第i个数表示SHY第i次能选出的汉字的最多种类数。
Sample Input
5 3 5
1 2 2 3 1
0 4
1 2
2 2
2 3
3 5
Sample Output
2
0
0
0
1
HINT
Source
BZOJ 2821: 作诗(Poetize)( 分块 )
原文:http://www.cnblogs.com/JSZX11556/p/5031198.html