| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 19068 | Accepted: 8697 |
Description
Input
Output
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
Source
最大流。
构图方式:
①把每个顾客看作除源点和汇点以外的节点。
②从源点向每个猪圈的第一个顾客连一条边,容量为该猪圈最初的猪的数量。
③每个猪圈的前后两个顾客之间连一条边,容量为正无穷。因为可以任意分配每个猪圈中的猪的数量。
④从每个顾客向汇点连一条边,容量为要购买的猪的数量。
这道题的构图方法很巧妙。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define LL long long
#define pa pair<int,int>
#define MAXN 105
#define MAXM 1005
#define INF 1000000000
using namespace std;
int n,m,k,x,s,t,cnt=1,ans=0;
int pre[MAXM],head[MAXN],cur[MAXN],dis[MAXN],c[MAXN],a[MAXM];
bool vst[MAXM],f[MAXN];
struct edge_type
{
int next,to,v;
}e[10005];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y,int v)
{
e[++cnt]=(edge_type){head[x],y,v};head[x]=cnt;
e[++cnt]=(edge_type){head[y],x,0};head[y]=cnt;
}
inline bool bfs()
{
queue<int>q;
memset(dis,-1,sizeof(dis));
dis[s]=0;q.push(s);
while (!q.empty())
{
int tmp=q.front();q.pop();
if (tmp==t) return true;
for(int i=head[tmp];i;i=e[i].next) if (e[i].v&&dis[e[i].to]==-1)
{
dis[e[i].to]=dis[tmp]+1;
q.push(e[i].to);
}
}
return false;
}
inline int dfs(int x,int f)
{
int tmp,sum=0;
if (x==t) return f;
for(int &i=cur[x];i;i=e[i].next)
{
int y=e[i].to;
if (e[i].v&&dis[y]==dis[x]+1)
{
tmp=dfs(y,min(f-sum,e[i].v));
e[i].v-=tmp;e[i^1].v+=tmp;sum+=tmp;
if (sum==f) return sum;
}
}
if (!sum) dis[x]=-1;
return sum;
}
inline void dinic()
{
while (bfs())
{
F(i,1,n+2) cur[i]=head[i];
ans+=dfs(s,INF);
}
}
int main()
{
memset(head,0,sizeof(head));
memset(c,0,sizeof(c));
memset(vst,false,sizeof(vst));
m=read();n=read();s=n+1;t=n+2;
F(i,1,m) a[i]=read();
F(i,1,n)
{
memset(f,false,sizeof(f));
k=read();
while (k--)
{
x=read();
if (!vst[x]) {vst[x]=true;c[i]+=a[x];}
if (pre[x]&&!f[pre[x]]) add_edge(pre[x],i,INF),f[pre[x]]=true;
pre[x]=i;
}
x=read();if (x) add_edge(i,t,x);
}
F(i,1,n) if (c[i]) add_edge(s,i,c[i]);
dinic();
printf("%d\n",ans);
}
原文:http://blog.csdn.net/aarongzk/article/details/50256669