https://leetcode.com/problems/3sum/
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
3sum问题参考链接:https://en.wikipedia.org/wiki/3SUM
class Solution { public: vector<vector<int>> threeSum(vector<int>& nums) { typedef vector<int> vec; typedef vector<vec> mat; mat ans; size_t n = nums.size(); if (n < 3) return ans; sort(nums.begin(), nums.end()); for (size_t i = 0; i < n - 2; i++) { if (i > 0 && nums[i] == nums[i - 1]) continue; size_t j = i + 1, k = n - 1; while (j < k) { int sum = nums[i] + nums[j] + nums[k]; if (!sum) { if (j > i + 1 && nums[j] == nums[j - 1]) { j++; continue; } vec ret; ret.push_back(nums[i]); ret.push_back(nums[j]); ret.push_back(nums[k]); ans.push_back(ret); j++; } if (sum > 0) { k--; if (nums[k] == nums[k + 1]) k--; } if (sum < 0) { j++; if (nums[j] == nums[j - 1]) j++; } } } return ans; } };
原文:http://www.cnblogs.com/GadyPu/p/5040263.html