首页 > 其他 > 详细

Kuangbin 带你飞 数位DP题解

时间:2015-12-12 21:36:17      阅读:296      评论:0      收藏:0      [点我收藏+]

以前一直不知道该咋搞这个比较好。

感觉推起来那个数字好麻烦。后来有一种比较好的写法就是直接的DFS写法。相应的ismax表示当前位是否有限制。

数位DP也是有一种类似模版的东西,不过需要好好理解。与其他模版不同。

主要还是状态的定义

模版就不整理了。直接上题。

另外这里有一道题是数位DP+自动机的放到自动机里做

HDU 2089 不要62

基本的数位DP可以用来理解DFS写法

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 15;
int dp[MAXN][2];
int digit[MAXN],length;

int calcu(int len,bool issix,bool ismax)
{
    if (len == 0) return 1;
    if (!ismax && dp[len][issix] != -1) return dp[len][issix];
    int limit = ismax ? digit[len] : 9;
    int tot = 0;
    for (int i = 0 ; i <= limit ; i++)
    {
        if ((issix && i == 2) || i == 4 ) continue;
        tot += calcu(len - 1,i == 6 ,ismax && i == limit);
    }
    if (ismax) return tot;
    else return dp[len][issix] = tot;
}

int slove(int x)
{
    int len = 0;
    int num = x;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,false,true);
}

int main()
{
    memset(dp,-1,sizeof(dp));
    int l,r;
    while (scanf("%d%d",&l,&r) != EOF)
    {
        if (l == 0 && r == 0) break;
        if (l > r) swap(l,r);
        printf("%d\n",slove(r) - slove(l - 1));
    }
    return 0;
}
View Code

HDU 3555 Bomb

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 30;
LL dp[MAXN][2];
int digit[MAXN];

LL calcu(int length,bool isfour,bool ismax)
{
    if (length == 0) return 1;
    if (!ismax && dp[length][isfour] >= 0) return dp[length][isfour];
    LL tot = 0;
    int limit = ismax ? digit[length] : 9;
    for (int i = 0 ; i <= limit ; i++)
    {
        if (isfour && i == 9) continue;
        tot += calcu(length - 1,i == 4,ismax && i == limit);
    }
    if (!ismax) return dp[length][isfour] = tot;
    return tot;
}

LL slove(LL x)
{
    int len = 0;
    LL num = x;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,false,true);
}

int main()
{
    int T,kase = 1;
    scanf("%d",&T);
    memset(dp,-1,sizeof(dp));
    while (T--)
    {
        LL N;
        scanf("%I64d",&N);
        printf("%I64d\n",N - slove(N) + 1);
    }
    return 0;
}
View Code

POJ 3252 Round Numbers

统计二进制形式中0的个数比1的个数不小的数字的数目

很简单的只是进制变成了2进制,这里还要和下一个题目做一下比较。状态的定义不能想简单了

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 70;
LL dp[MAXN][MAXN][MAXN];
int digit[MAXN];

LL calcu(int length,int preone,int prezero,bool zero,bool ismax)
{
    if (length == 0) return prezero >= preone;
    if (!ismax && dp[length][preone][prezero] >= 0) return dp[length][preone][prezero];
    LL tot = 0;
    int limit = ismax ? digit[length] : 1;
    for (int i = 0 ; i <= limit ; i++)
    {
        int addone = 0,addzero = 0;
        if (i == 1) addone = 1;
        if (i == 0) addzero = 1;
        tot += calcu(length - 1,preone +addone,(zero && i == 0) ? 0 : prezero + addzero, zero && i == 0 ,ismax && i == limit);
    }
    if (!ismax) return dp[length][preone][prezero] = tot;
    return tot;
}

LL slove(LL x)
{
    int len = 0;
    LL num = x;
    while (num)
    {
        digit[++len] = num % 2;
        num >>= 1;
    }
    return calcu(len,0,0,true,true);
}

int main()
{
    LL l,r;
    memset(dp,-1,sizeof(dp));
    while (scanf("%I64d%I64d",&l,&r) != EOF)
    {
       // printf("%I64d\n",slove(r));
        //printf("%I64d\n",slove(l - 1));
        //printf("%I64d\n",slove(l));
        printf("%I64d\n",slove(r) - slove(l - 1));
    }
    return 0;
}
View Code

Spoj BAlnum BALNUM - Balanced Numbers

这个题题意是统计十进制形式中奇数出现偶数次,偶数出现奇数次的数字 个数

为什么这道题状态不能向前边那个题,直接dp[i][j][k]第i位出现j个奇数k个偶数然后直接推,

看起来很简单,然而这个状态是错的。为什么?考虑dp[5][3][2],他究竟表示什么。

可以在记忆花过程中直接返回这个值么?13522后边若干位和14688后边若干位都是这个dp状态!!

 

所以上述状态是错的。正确的是三进制状压。表示每个数字出现的次数的状态0,1,2

具体看代码

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 30;
const int MAXD = 60010;
LL dp[MAXN][MAXD];
int digit[MAXN];
//order : 9 8 7 6 5 4 3 2 1 0;
//num: 0 1 2 3 4 5 6 7 8 9
//sta : 0 no 1 odd 2 even

bool judge(int sta)
{
    int num[15];
    for (int i = 0 ; i < 10 ; i++)
    {
        num[i] = sta % 3;
        sta /= 3;
    }
    for (int i = 0 ; i < 10 ; i++)
    {
        if (num[i] != 0)
        {
            if (i % 2 == 0 && num[i] == 2) return false;
            if (i % 2 == 1 && num[i] == 1) return false;
        }
    }
    return true;
}

int getsta(int x,int sta)
{
    int num[15];
    for (int i = 0 ; i < 10 ; i++)
    {
        num[i] = sta % 3;
        sta /= 3;
    }
    if (num[x] == 0) num[x] = 1;
    else num[x] = 3 - num[x];
    int ret = 0;
    for (int i = 9 ; i >= 0 ; i--)
        ret = ret * 3 + num[i];
    return ret;
}

LL calcu(int length,int presta,bool zero,bool ismax)
{
    if (length == 0) return judge(presta);
    if (!ismax && dp[length][presta] >= 0) return dp[length][presta];
    int limit = ismax ? digit[length] : 9;
    LL ret = 0;
    for (int i = 0 ; i <= limit ; i++)
    {
        ret += calcu(length - 1,(zero && i == 0) ? 0 : getsta(i,presta),zero && i == 0,ismax && i == limit);
    }
    if (!ismax) return dp[length][presta] = ret;
    return ret;
}

LL slove(LL x)
{
    LL num = x;
    int len = 0;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,0,true,true);
}

int main()
{
    int T;
    memset(dp,-1,sizeof(dp));
    scanf("%d",&T);
    while (T--)
    {
        LL l,r;
        scanf("%lld%lld",&l,&r);
        //cout << slove(r) << endl;
        printf("%lld\n",slove(r) - slove(l - 1));
    }
    return 0;
}
View Code

 

 

Codeforces 55D Beautiful numbers

判断数字是否能整除他的十进制形式中所有非0数字的个数

注意到能整除所有位数实际上就是能整除这些位数的LCM,最大就是2520

那么状态定义dp[i][j][k] = val表示到达第i位对2520的摸为多少,当前的LCM为多少

另外代码里对LCM进行了哈希

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
LL gcd(LL a, LL b) {return a % b == 0 ? b : gcd(b, a % b);}
LL lcm(LL a,LL b) {return a / gcd(a,b) * b;}
const int MAXN = 110;
const int MAXD = 2600;
const LL MOD = 2520;
LL dp[30][MAXD][MAXN];
int digit[MAXN];
int Hash[MAXD];

void init()
{
    int cas = 0;
    for (int i = 1 ; i <= MOD ; i++)
    {
        if (MOD % i == 0)
            Hash[i] = ++cas;
    }
}

LL calcu(int length,int premod,int prelcm,bool ismax)
{
    if (length == 0) return premod % prelcm == 0;
    if (!ismax && dp[length][premod][Hash[prelcm]] >= 0)
        return dp[length][premod][Hash[prelcm]];
    int limit = ismax ? digit[length] : 9;
    LL tot = 0;
    for (int i = 0 ; i <= limit ; i++)
    {
        int nextmod = (premod * 10 + i) % MOD;
        int nextlcm;
        if (i == 0) nextlcm = prelcm;
        else nextlcm = lcm(prelcm,i);
        tot += calcu(length - 1,nextmod,nextlcm,ismax && i == limit);
    }
    if (ismax) return tot;
    else return dp[length][premod][Hash[prelcm]] = tot;
}

LL slove(LL x)
{
    LL num = x,len = 0;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,0,1,true);
}

int main()
{
    init();
    memset(dp,-1,sizeof(dp));
    int T;
    scanf("%d",&T);
    while (T--)
    {
        LL l,r;
        scanf("%I64d%I64d",&l,&r);
       // cout << slove(r) << endl;
        printf("%I64d\n",slove(r) - slove(l - 1));
    }
    return 0;
}
View Code

HDU 3709 Balanced Number

一开始觉得好难。后来发现只需要枚举支点。复杂度并不会高多少。20而已

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
//此题枚举支点即可不用想麻烦了。
const int MAXN = 30;
LL dp[MAXN][MAXN][MAXN * 100];
int digit[MAXN];

LL calcu(int length,int premid,int preval,bool ismax)
{
    if (length == 0) return preval == 0;
    if (preval < 0) return 0;
    if (!ismax && dp[length][premid][preval] >= 0) return dp[length][premid][preval];
    LL tot = 0;
    int limit = ismax ? digit[length] : 9;
    for (int i = 0 ; i <= limit ; i++)
    {
        int add = (length - premid) * i;
        int nextval = preval + add;
        tot += calcu(length - 1,premid,nextval,ismax && i == limit);
    }
    if (!ismax) return dp[length][premid][preval] = tot;
    return tot;
}

LL slove(LL x)
{
    int len = 0;
    LL num = x;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    LL ret = 0;
    for (int i = 1 ; i <= len ; i++)
        ret += calcu(len,i,0,true);
    return ret - len + 1;
}

int main()
{
    memset(dp,-1,sizeof(dp));
    LL l,r;
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%I64d%I64d",&l,&r);
        printf("%I64d\n",slove(r) - slove(l - 1));
    }
    return 0;
}
View Code

HDU 3652 B-number

包含13且整除13的数字个数

为什么不能直接dp[i][0/1]表示到达第i位是否出现13?同前面错误状态的比较

代码

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 30;
LL dp[MAXN][5][20];
int digit[MAXN];

LL calcu(int length,int presta,int premod,bool ismax)
{
    if (length == 0) return (presta == 2 && premod == 0);
    if (!ismax && dp[length][presta][premod] >= 0) return dp[length][presta][premod];
    LL tot = 0;
    int limit = ismax ? digit[length] : 9;
    for (int i = 0 ; i <= limit ; i++)
    {
        int nextmod = (premod * 10 + i) % 13;
        int nextsta = presta;
        if (presta == 0 && i == 1) nextsta = 1;
        if (presta == 1 && i != 1) nextsta = 0;
        if (presta == 1 && i == 3) nextsta = 2;
        tot += calcu(length - 1,nextsta,nextmod,ismax && i == limit);
    }
    if (!ismax) return dp[length][presta][premod] = tot;
    return tot;
}

LL slove(LL x)
{
    LL num = x;
    int len = 0;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,0,0,true);
}

int main()
{
    memset(dp,-1,sizeof(dp));
    LL N;
    while (scanf("%I64d",&N) != EOF)
    {
        printf("%I64d\n",slove(N));
    }
    return 0;
}
View Code

HDU 4352 XHXJ‘s LIS

统计数字表示中LIS==K的数字的个数

这题状压+数位DP

觉得好厉害。为什么状压。考虑nlognLIS是怎么做的。这里的数字只能是0-9

所以状压。举个例子 1 2 4 6 是g数组,LIS = 4,现在来了个5.G数组变成 1 2 4 5 LIS仍然等于4

考虑好NLOGN LIS 怎么来的。注意前导0和0!

然后数位DP

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 30;
LL dp[MAXN][(1 << 10) + 50][15];
LL L,R,K;
int digit[MAXN];

int getsta(int x,int s)
{
    for (int i = x ; i < 10 ; i++)
    {
        if (s & (1 << i))
        {
            return (s ^ (1 << i)) | (1 << x);
        }
    }
    return s | (1 << x);
}

int getnum(int x)
{
    int ret = 0;
    while (x)
    {
        if (x & 1) ret++;
        x >>= 1;
    }
    return ret;
}

LL calcu(int length,int presta,bool prezero,bool ismax)
{
    if (length == 0) return getnum(presta) == K;
    if (!ismax && dp[length][presta][K] >= 0) return dp[length][presta][K];
    LL tot = 0;
    int limit = ismax ? digit[length] : 9;
    for (int i = 0 ; i <= limit ; i++)
    {
        tot += calcu(length - 1,(i == 0 && prezero) ? 0 : getsta(i,presta),i == 0 && prezero,ismax && i == limit);
    }
    if (ismax) return tot;
    else return dp[length][presta][K] = tot;
}

LL slove(LL x)
{
    int len = 0;
    LL num = x;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,0,true,true);
}

int main()
{
    int T,kase = 1;
    memset(dp,-1,sizeof(dp));
    scanf("%d",&T);
    while (T--)
    {
        scanf("%I64d%I64d%I64d",&L,&R,&K);
        printf("Case #%d: %I64d\n",kase++,slove(R) - slove(L - 1));
    }
    return 0;
}
View Code

HDU 4734 f(x)

数位DP的一维状态表示差值即可

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL int
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 15;
const int MAXD = 100010;
LL dp[20][MAXD];
int digit[MAXN];
LL val,A,B;

LL calcu(int length,int preval,bool ismax)
{
    if (length == 0) return preval >= 0;
    if (preval < 0) return 0;
    if (!ismax && dp[length][preval] >= 0) return dp[length][preval];
    LL tot = 0;
    int limit = ismax ? digit[length] : 9;
    for (int i = 0 ; i <= limit ; i++)
    {
        tot += calcu(length - 1,preval - (1 << (length - 1)) * i,ismax && i == limit);
    }
    if (!ismax) return dp[length][preval] = tot;
    return tot;
}

int f(int x)
{
    int ret = 0,cas = 0;
    while (x)
    {
        ret += (x % 10) * (1 << cas);
        cas++;
        x /= 10;
    }
    return ret;
}

LL slove()
{
    int len = 0;
    LL num = B;
    while (num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,f(A),true);
}

int main()
{
    memset(dp,-1,sizeof(dp));
    int T,kase = 1;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d",&A,&B);
        printf("Case #%d: %d\n",kase++,slove());
    }
    return 0;
}
View Code

HDU 4507 

主要是要求的不是数字个数。而是平方和。

那么可能久有点问题了

怎么做考虑(a + b1) ^ 2 + (a + b2) ^ 2 + .... 等于

a^2 * n + b1^ 2 + b2 ^ 2 + ..bn ^ 2 + 2 * a * (b1 + b2 +... bn)

上式实际上就是比如枚举到第3为a就1000,递归的找到b然后推即可

于是dp有三个值。数字个数。一次方和,二次方和

技术分享
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
const int MAXN = 25;
const int MOD = 1e9 + 7;
LL fac[20];
typedef pair<int,pair<LL,LL> >PII;
PII dp[MAXN][10][10][2];
int digit[MAXN];
bool vis[MAXN][10][10][2];

PII calcu(int length,int presum,int remain,bool contain,bool ismax)
{
    if (length == 0)
    {
        if (!contain && presum && remain)
            return make_pair(1,make_pair(0LL,0LL));
        else return make_pair(0,make_pair(0LL,0LL));
    }
    if (!ismax && vis[length][presum][remain][contain])
        return dp[length][presum][remain][contain];
    PII ret = make_pair(0,make_pair(0LL,0LL));
    int limit = ismax ? digit[length] : 9;
    for (int i = 0 ; i <= limit ; i++)
    {
        PII nxt = calcu(length - 1,(presum + i) % 7,(remain * 10 + i) % 7
                        ,contain || (i == 7),ismax && i == limit);
        LL preval = (LL)i * fac[length - 1] % MOD;
        ret.first = (ret.first + nxt.first) % MOD;
        ret.second.first = (ret.second.first + nxt.second.first + preval * nxt.first) % MOD;
        ret.second.second = (ret.second.second + nxt.second.second + 2 * preval * nxt.second.first % MOD
                                    + preval * preval % MOD * nxt.first) % MOD;
    }
    if(!ismax)
    {
        vis[length][presum][remain][contain] = true;
        dp[length][presum][remain][contain] = ret;
        return ret;
    }
    return ret;
}

LL slove(LL x)
{
    int len = 0;
    LL num = x;
    while(num)
    {
        digit[++len] = num % 10;
        num /= 10;
    }
    return calcu(len,0,0,0,true).second.second;
}

int main()
{
    fac[0] = 1;
    for (int i = 1 ; i < 20 ; i++) fac[i] = fac[i - 1] * 10 % MOD;
    int T;
    memset(vis,false,sizeof(vis));
    scanf("%d",&T);
    while (T--)
    {
        LL l,r;
        scanf("%I64d%I64d",&l,&r);
        printf("%I64d\n",(slove(r) - slove(l - 1) + MOD) % MOD);
    }
    return 0;
}
View Code

BCD CODE 放到自动机专题里在做

Kuangbin 带你飞 数位DP题解

原文:http://www.cnblogs.com/Commence/p/5041730.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!