原文:http://blog.xlvector.net/2014-02/different-logistic-regression/
最近几年广告系统成为很多公司的重要系统之一,定向广告技术是广告系统中的重要技术,点击率预估是定向广告技术中的重要组成部分,Logistic Regression是解决点击率预估最常用的机器学习算法。所以本文介绍一下Logistic Regression(下文简称LR)。
LR主要用来解决两类分类问题。下面的问题是一些典型的两类分类问题:
两类分类问题是机器学习的基本问题,所有的分类算法至少都可以解决两类分类问题, 比如:
那为什么点击率预估问题选择LR呢,主要是因为:
自从LR提出之后,学术界对它的改进主要基于两个方面:
正则化是机器学习中的一个重要技术,它的主要目的是让防止一个模型过拟合。目前比较常用的正则化有L1,和L2:
L1正则化相对与L2正则化有一个优点,就是加入L1正则化的损失函数在优化后,绝大多数特征的权重都是0。这个特性可以大大减少在线预估时的内存占用,并提高预测的速度,这是因为
L2正则化的LR的损失函数是一个可以求导的凸函数,从而可以用最速下降法(梯度法)进行优化。一般梯度法有3种
这3种方法是最早提出的优化方法。可以用梯度法,自然也可以用牛顿法来获得超线性收敛的特性,于是共轭梯度法和LBFGS也被用来优化LR。LBFGS是基于L2正则化的,如果基于L1正则化,微软提出了OWLQN算法(http://blog.csdn.net/qm1004/article/details/18083637)。
无论是梯度法还是拟牛顿法,它们都是频率学派的优化双方。它们其实是极大似然估计用了不同的优化算法。于是,贝叶斯学派也提出了Bayesian的优化算法
Ad Predictor有几个比较好的特性
Ad Predictor很好了,不过它是基于L2正则化的,这样总是让人不能满意。Google在2013年发表了一篇论文(Ad Click Prediction: a View from the Trenches),介绍了一个基于L1正则化的LR优化算法FTRL-Proximal,且又具有上述Ad Predictor的两个优点。
算法的并行化有两种
在前面提到的算法中,基于Batch的算法(Batch-GD, LBFGS, OWLQN)都是可以进行无损的并行化的。而基于SGD的算法(Ad Predictor, FTRL-Proximal)都只能进行有损的并行化。
原文:http://www.cnblogs.com/zhizhan/p/5043449.html